Do you want to publish a course? Click here

A Parallel Algorithm for Minimum Cost Submodular Cover

94   0   0.0 ( 0 )
 Added by Yingli Ran
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In a minimum cost submodular cover problem (MinSMC), given a monotone non-decreasing submodular function $fcolon 2^V rightarrow mathbb{Z}^+$, a cost function $c: Vrightarrow mathbb R^{+}$, an integer $kleq f(V)$, the goal is to find a subset $Asubseteq V$ with the minimum cost such that $f(A)geq k$. MinSMC has a lot of applications in machine learning and data mining. In this paper, we design a parallel algorithm for MinSMC which obtains a solution with approximation ratio at most $frac{H(min{Delta,k})}{1-5varepsilon}$ with probability $1-3varepsilon$ in $O(frac{log mlog nlog^2 mn}{varepsilon^4})$ rounds, where $Delta=max_{vin V}f(v)$, $H(cdot)$ is the Hamornic number, $n=f(V)$, $m=|V|$ and $varepsilon$ is a constant in $(0,frac{1}{5})$. This is the first paper obtaining a parallel algorithm for the weighted version of the MinSMC problem with an approximation ratio arbitrarily close to $H(min{Delta,k})$.



rate research

Read More

We present a massively parallel algorithm, with near-linear memory per machine, that computes a $(2+varepsilon)$-approximation of minimum-weight vertex cover in $O(loglog d)$ rounds, where $d$ is the average degree of the input graph. Our result fills the key remaining gap in the state-of-the-art MPC algorithms for vertex cover and matching problems; two classic optimization problems, which are duals of each other. Concretely, a recent line of work---by Czumaj et al. [STOC18], Ghaffari et al. [PODC18], Assadi et al. [SODA19], and Gamlath et al. [PODC19]---provides $O(loglog n)$ time algorithms for $(1+varepsilon)$-approximate maximum weight matching as well as for $(2+varepsilon)$-approximate minimum cardinality vertex cover. However, the latter algorithm does not work for the general weighted case of vertex cover, for which the best known algorithm remained at $O(log n)$ time complexity.
We design new serial and parallel approximation algorithms for computing a maximum weight $b$-matching in an edge-weighted graph with a submodular objective function. This problem is NP-hard; the new algorithms have approximation ratio $1/3$, and are relaxations of the Greedy algorithm that rely only on local information in the graph, making them parallelizable. We have designed and implemented Local Lazy Greedy algorithms for both serial and parallel computers. We have applied the approximate submodular $b$-matching algorithm to assign tasks to processors in the computation of Fock matrices in quantum chemistry on parallel computers. The assignment seeks to reduce the run time by balancing the computational load on the processors and bounding the number of messages that each processor sends. We show that the new assignment of tasks to processors provides a four fold speedup over the currently used assignment in the NWChemEx software on $8000$ processors on the Summit supercomputer at Oak Ridge National Lab.
94 - Alina Ene , Huy L. Nguyen 2019
In this work, we give a new parallel algorithm for the problem of maximizing a non-monotone diminishing returns submodular function subject to a cardinality constraint. For any desired accuracy $epsilon$, our algorithm achieves a $1/e - epsilon$ approximation using $O(log{n} log(1/epsilon) / epsilon^3)$ parallel rounds of function evaluations. The approximation guarantee nearly matches the best approximation guarantee known for the problem in the sequential setting and the number of parallel rounds is nearly-optimal for any constant $epsilon$. Previous algorithms achieve worse approximation guarantees using $Omega(log^2{n})$ parallel rounds. Our experimental evaluation suggests that our algorithm obtains solutions whose objective value nearly matches the value obtained by the state of the art sequential algorithms, and it outperforms previous parallel algorithms in number of parallel rounds, iterations, and solution quality.
This paper describes a simple greedy D-approximation algorithm for any covering problem whose objective function is submodular and non-decreasing, and whose feasible region can be expressed as the intersection of arbitrary (closed upwards) covering constraints, each of which constrains at most D variables of the problem. (A simple example is Vertex Cover, with D = 2.) The algorithm generalizes previous approximation algorithms for fundamental covering problems and online paging and caching problems.
In the submodular cover problem, we are given a non-negative monotone submodular function $f$ over a ground set $E$ of items, and the goal is to choose a smallest subset $S subseteq E$ such that $f(S) = Q$ where $Q = f(E)$. In the stochastic version of the problem, we are given $m$ stochastic items which are different random variables that independently realize to some item in $E$, and the goal is to find a smallest set of stochastic items whose realization $R$ satisfies $f(R) = Q$. The problem captures as a special case the stochastic set cover problem and more generally, stochastic covering integer programs. We define an $r$-round adaptive algorithm to be an algorithm that chooses a permutation of all available items in each round $k in [r]$, and a threshold $tau_k$, and realizes items in the order specified by the permutation until the function value is at least $tau_k$. The permutation for each round $k$ is chosen adaptively based on the realization in the previous rounds, but the ordering inside each round remains fixed regardless of the realizations seen inside the round. Our main result is that for any integer $r$, there exists a poly-time $r$-round adaptive algorithm for stochastic submodular cover whose expected cost is $tilde{O}(Q^{{1}/{r}})$ times the expected cost of a fully adaptive algorithm. Prior to our work, such a result was not known even for the case of $r=1$ and when $f$ is the coverage function. On the other hand, we show that for any $r$, there exist instances of the stochastic submodular cover problem where no $r$-round adaptive algorithm can achieve better than $Omega(Q^{{1}/{r}})$ approximation to the expected cost of a fully adaptive algorithm. Our lower bound result holds even for coverage function and for algorithms with unbounded computational power.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا