No Arabic abstract
We present a novel 3D topological insulator, termed the Takagi topological insulator (TTI), which is protected by the sublattice symmetry and spacetime inversion symmetry. The symmetries enable the Takagi factorization in the Hamiltonian space. Due to the intrinsic O(N) gauge symmetry in the Takagi factorization, a Z2 topological invariant is formulated. We examine the physical consequences of the topological invariant through a Dirac model, which exhibits exotic bulk boundary correspondence. The most stable phases are a number of novel third-order topological insulators featured with odd inversion pairs of corners hosting zero-modes. Furthermore, the nontrivial bulk invariant corresponds to a rich cross-boundary-order phase diagram with a hierarchical cellular structure. Each cell with its own dimensionality corresponds to a certain configuration of boundary states, which could be of mixed orders.
We report the evolution of the surface electronic structure and surface material properties of a topological crystalline insulator (TCI) Pb1-xSnxSe as a function of various material parameters including composition x, temperature T and crystal structure. Our spectroscopic data demonstrate the electronic groundstate condition for the saddle point singularity, the tunability of surface chemical potential, and the surface states response to circularly polarized light. Our results show that each material parameter can tune the system between trivial and topological phase in a distinct way unlike as seen in Bi2Se3 and related compounds, leading to a rich and unique topological phase diagram. Our systematic studies of the TCI Pb1-xSnxSe are valuable materials guide to realize new topological phenomena.
A topological crystalline insulator (TCI) is a new phase of topological matter, which is predicted to exhibit distinct topological quantum phenomena, since space group symmetries replace the role of time-reversal symmetry in the much-studied Z$_2$ topological insulators. Utilizing high-resolution angle-resolved photoemission spectroscopy (ARPES), we reveal the momentum space nature of interconnectivity of the Fermi surface pockets leading to a saddle point singularity within the topological surface state alone in the TCI Pb$_{0.7}$Sn$_{0.3}$Se. Moreover, we show that the measured momentum-integrated density of states exhibits pronounced peaks at the saddle point energies, demonstrating the van Hove singularities (VHSs) in the topological surface states, whose surface chemical potential, as we show, can be tuned via surface chemical gating, providing access to the topological correlated physics on the surface. Our experimental data reveal a delicate relationship among lattice constant, band gap and spin-orbit coupling strength associated with the topological phase transition in Pb$_{1-x}$Sn$_{x}$Se. Furthermore, we explore the robustness of the TCI phase with VHS in Pb$_{1-x}$Sn$_{x}$Se, which shows a variety of distinct topological phase transitions driven by either thermal instability or broken crystalline symmetry, and thus revealing a rich topological phase diagram connectivity in Pb$_{1-x}$Sn$_{x}$Se for the first time.
We use magnetotransport in dual-gated magnetic topological insulator heterostructures to map out a phase diagram of the topological Hall and quantum anomalous Hall effects as a function of the chemical potential (primarily determined by the back gate voltage) and the asymmetric potential (primarily determined by the top gate voltage). A theoretical model that includes both surface states and valence band quantum well states allows the evaluation of the variation of the Dzyaloshinskii-Moriya interaction and carrier density with gate voltages. The qualitative agreement between experiment and theory provides strong evidence for the existence of a topological Hall effect in the system studied, opening up a new route for understanding and manipulating chiral magnetic spin textures in real space.
We calculate the phase diagram of a model for topological superconducting wires with local s-wave pairing, spin-orbit coupling $vec{lambda}$ and magnetic field $vec{B}$ with arbitrary orientations. This model is a generalized lattice version of the one proposed by Lutchyn $textit{et al.}$ [Phys. Rev. Lett. $textbf{105}$ 077001 (2010)] and Oreg $textit{et al.}$ [Phys. Rev. Lett. $textbf{105}$ 177002 (2010)], who considered $vec{lambda}$ perpendicular to $vec{B}$. The model has a topological gapped phase with Majorana zero modes localized at the ends of the wires. We determine analytically the boundary of this phase. When the directions of the spin-orbit coupling and magnetic field are not perpendicular, in addition to the topological phase and the gapped non topological phase, a gapless superconducting phase appears.
A Z2 topological insulator protected by time-reversal symmetry is realized via spin-orbit interaction driven band inversion. For example, the topological phase in the Bi-Sb system is due to an odd number of band