Do you want to publish a course? Click here

Ion acceleration by an ultrashort laser pulse interacting with a near-critical-density gas jet

64   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate laser-driven Helium ion acceleration with cut-off energies above 25 MeV and peaked ion number above $10^8$ /MeV for 22(2) MeV projectiles from near-critical density gas jet targets. We employed shock gas jet nozzles at the high-repetition-rate (HRR) VEGA-2 laser system with 3 J in pulses of 30 fs focused down to intensities in the range between $9times10^{19}$ W/cm$^2$ and $1.2times10^{20}$ W/cm$^2$. We demonstrate acceleration spectra with minor shot-to-shot changes for small variations in the target gas density profile. Difference in gas profiles arise due to nozzles being exposed to a experimental environment, partially ablating and melting.



rate research

Read More

72 - J.H. Bin , M. Yeung , Z. Gong 2017
We report on the experimental studies of laser driven ion acceleration from double-layer target where a near-critical density target with a few-micron thickness is coated in front of a nanometer thin diamond-like carbon foil. A significant enhancement of proton maximum energies from 12 to ~30 MeV is observed when relativistic laser pulse impinge on the double-layer target under linear polarization. We attributed the enhanced acceleration to superponderomotive electrons that were simultaneously measured in the experiments with energies far beyond the free-electron ponderomotive limit. Our interpretation is supported by two-dimensional simulation results.
118 - M. Liu , S. M. Weng , Y. T. Li 2016
Laser-driven collisonless electrostatic shock formation and the subsequent ion acceleration have been studied in near critical density plasmas. Particle-in-cell simulations show that both the speed of laser-driven collisionless electrostatic shock and the energies of shock-accelerated ions can be greatly enhanced due to fast laser propagation in near critical density plasmas. However, a response time longer than tens of laser wave cycles is required before the shock formation in a near critical density plasma, in contrast to the quick shock formation in a highly overdense target. More important, we find that some ions can be reflected by the collisionless shock even if the electrostatic potential jump across the shock is smaller than the ion kinetic energy in the shock frame, which seems against the conventional ion-reflection condition. These anomalous ion reflections are attributed to the strongly time-oscillating electric field accompanying laser-driven collisionless shock in a near critical density plasma.
79 - X. F. Li , P. Gibbon , A. Hutzen 2021
The production of polarized proton beams with multi-GeV energies in ultra-intense laser interaction with targets is studied with three-dimensional Particle-In-Cell simulations. A near-critical density plasma target with pre-polarized proton and tritium ions is considered for the proton acceleration. The pre-polarized protons are initially accelerated by laser radiation pressure before injection and further acceleration in a bubble-like wakefield. The temporal dynamics of proton polarization is tracked via the T-BMT equation, and it is found that the proton polarization state can be altered both by the laser field and the magnetic component of the wakefield. The dependence of the proton acceleration and polarization on the ratio of the ion species is determined, and it is found that the protons can be efficiently accelerated as long as their relative fraction is less than 20%, in which case the bubble size is large enough for the protons to obtain sufficient energy to overcome the bubble injection threshold.
Ion acceleration driven by superintense laser pulses is attracting an impressive and steadily increasing effort. Motivations can be found in the potential for a number of foreseen applications and in the perspective to investigate novel regimes as far as available laser intensities will be increasing. Experiments have demonstrated in a wide range of laser and target parameters the generation of multi-MeV proton and ion beams with unique properties such as ultrashort duration, high brilliance and low emittance. In this paper we give an overview of the state-of-the art of ion acceleration by laser pulses as well as an outlook on its future development and perspectives. We describe the main features observed in the experiments, the observed scaling with laser and plasma parameters and the main models used both to interpret experimental data and to suggest new research directions.
170 - A. Yogo , S. V. Bulanov , M. Mori 2015
Dependence of the energy of ions accelerated during interaction of the laser pulse obliquelly incident on the thin foil target on the laser polarization is studied experimentally and theoretically. We found that the ion energy being maximal for the p-polarization gradually decreases when the pulse becomes s-polarized. The experimentally found dependences of the ion energy are explained by invoking the anomalous electron heating which results in high electrostatic potential formation at the target surface. Anomalous heating of electrons beyond the energy of quiver motion in the laser field is described within the framework of theoretical model of driven oscillator with a step-like nonlinearity. We have demonstrated that the electron anomalous heating can be realized in two regimes: nonlinear resonance and stochastic heating, depending on the extent of stochasticity. We have found the accelerated ion energy scaling determined by the laser intensity, pulse duration, polarization angle and incident angle.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا