Do you want to publish a course? Click here

Collisionless electrostatic shock formation and ion acceleration in intense laser interactions with near critical density plasmas

119   0   0.0 ( 0 )
 Added by Suming Weng
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Laser-driven collisonless electrostatic shock formation and the subsequent ion acceleration have been studied in near critical density plasmas. Particle-in-cell simulations show that both the speed of laser-driven collisionless electrostatic shock and the energies of shock-accelerated ions can be greatly enhanced due to fast laser propagation in near critical density plasmas. However, a response time longer than tens of laser wave cycles is required before the shock formation in a near critical density plasma, in contrast to the quick shock formation in a highly overdense target. More important, we find that some ions can be reflected by the collisionless shock even if the electrostatic potential jump across the shock is smaller than the ion kinetic energy in the shock frame, which seems against the conventional ion-reflection condition. These anomalous ion reflections are attributed to the strongly time-oscillating electric field accompanying laser-driven collisionless shock in a near critical density plasma.



rate research

Read More

79 - X. F. Li , P. Gibbon , A. Hutzen 2021
The production of polarized proton beams with multi-GeV energies in ultra-intense laser interaction with targets is studied with three-dimensional Particle-In-Cell simulations. A near-critical density plasma target with pre-polarized proton and tritium ions is considered for the proton acceleration. The pre-polarized protons are initially accelerated by laser radiation pressure before injection and further acceleration in a bubble-like wakefield. The temporal dynamics of proton polarization is tracked via the T-BMT equation, and it is found that the proton polarization state can be altered both by the laser field and the magnetic component of the wakefield. The dependence of the proton acceleration and polarization on the ratio of the ion species is determined, and it is found that the protons can be efficiently accelerated as long as their relative fraction is less than 20%, in which case the bubble size is large enough for the protons to obtain sufficient energy to overcome the bubble injection threshold.
The existence and properties of low Mach-number ($M gtrsim 1$) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. Using this semi-analytical model, we study the effect of electron-to-ion temperature ratio and presence of impurities on both the maximum shock potential and Mach number. We find that even a small amount of impurities can influence the shock properties significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.
We demonstrate laser-driven Helium ion acceleration with cut-off energies above 25 MeV and peaked ion number above $10^8$ /MeV for 22(2) MeV projectiles from near-critical density gas jet targets. We employed shock gas jet nozzles at the high-repetition-rate (HRR) VEGA-2 laser system with 3 J in pulses of 30 fs focused down to intensities in the range between $9times10^{19}$ W/cm$^2$ and $1.2times10^{20}$ W/cm$^2$. We demonstrate acceleration spectra with minor shot-to-shot changes for small variations in the target gas density profile. Difference in gas profiles arise due to nozzles being exposed to a experimental environment, partially ablating and melting.
72 - J.H. Bin , M. Yeung , Z. Gong 2017
We report on the experimental studies of laser driven ion acceleration from double-layer target where a near-critical density target with a few-micron thickness is coated in front of a nanometer thin diamond-like carbon foil. A significant enhancement of proton maximum energies from 12 to ~30 MeV is observed when relativistic laser pulse impinge on the double-layer target under linear polarization. We attributed the enhanced acceleration to superponderomotive electrons that were simultaneously measured in the experiments with energies far beyond the free-electron ponderomotive limit. Our interpretation is supported by two-dimensional simulation results.
86 - T. Toncian , C. Wang , E. McCary 2015
The irradiation of few nm thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse. The targets decompress to near and lower than critical densities plasmas extending over few micrometers, i.e. multiple wavelengths. The interaction of the main pulse with such a highly localized but inhomogeneous target leads to the generation of a short channel and further self-focusing of the laser beam. Experiments at the GHOST laser system at UT Austin using such targets measured non-Maxwellian, peaked electron distribution with large bunch charge and high electron density in the laser propagation direction. These results are reproduced in 2D PIC simulations using the EPOCH code, identifying Direct Laser Acceleration (DLA) as the responsible mechanism. This is the first time that DLA has been observed to produce peaked spectra as opposed to broad, maxwellian spectra observed in earlier experiments. This high-density electrons have potential applications as injector beams for a further wakefield acceleration stage as well as for pump-probe applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا