No Arabic abstract
Electrical manipulation of magnetism via spin-orbit torques (SOTs) promises efficient spintronic devices. In systems comprising magnetic insulators and heavy metals, SOTs have started to be investigated only recently, especially in systems with interfacial Dzyaloshinskii-Moriya interaction (iDMI). Here, we quantitatively study the SOT efficiency and iDMI in a series of gadolinium gallium garnet (GGG) / thulium iron garnet (TmIG) / platinum (Pt) heterostructures with varying TmIG and Pt thicknesses. We find that the non-monotonic SOT efficiency as a function of the magnetic layer thickness is not consistent with the 1/thickness dependence expected from a simple interfacial SOT mechanism. Moreover, considering the insulating nature of TmIG, our results cannot be explained by the SOT mechanism established for metallic magnets where the transverse charge spin current can inject and dephase in the magnetic layers. Rather we can explain this non-monotonic behavior by a model based on the interfacial spin mixing conductance that is affected by the thickness-dependent exchange splitting energy by determining the phase difference of the reflected spin-up and spin-down electrons at the TmIG / Pt interface. By studying the Pt thickness dependence, we find that the effective DMI for GGG / TmIG / Pt does not depend on the Pt thickness, which indicates that the GGG / TmIG interface is the source of the iDMI in this system. Our work demonstrates that SOT and DMI can originate from two different interfaces, which enables independent optimization of DMI and SOT for advanced chiral spintronics with low damping magnetic insulators.
We report the thickness dependence of Dzyaloshinskii-Moriya interaction (DMI) and spin-orbit torques (SOTs) in PtCo(t)AlOx, studied by current-induced domain wall (DW) motion and second-harmonic experiments. From the DW motion study, a monotonous decay of the effective DMI strength with an increasing Co thickness is observed, in agreement with a DMI originating at the PtCo interface. The study of the ferromagnetic thickness dependence of spin-orbit torques reveals a more complex behavior. The effective SOT-field driving the DW motion is found to initially increase and then saturate with an increasing ferromagnetic thickness, while the effective SOT-fields acting on a saturated magnetic state exhibit a non-monotonic behavior with increasing Co-thickness. The observed thickness dependence suggests the spin-Hall effect in Pt as the main origin of the SOTs, with the measured SOT amplitudes resulting from the interplay between the varying thickness and the transverse spin diffusion length of the Co layer.
The interfacial Dzyaloshinskii-Moriya interaction (DMI) in multilayers of heavy metal and ferromagnetic metals enables the stabilization of novel chiral spin structures such as skyrmions. Magnetic insulators, on the other hand can exhibit enhanced dynamics and properties such as lower magnetic damping and therefore it is of interest to combine the properties enabled by interfacial DMI with insulating systems. Here, we demonstrate the presence of interfacial DMI in heterostructures that include insulating magnetic layers. We use a bilayer of perpendicularly magnetized insulating thulium iron garnet (TmIG) and the heavy metal platinum, and find a surprisingly strong interfacial DMI that, combined with spin-orbit torque results, in efficient switching. The interfacial origin is confirmed through thickness dependence measurements of the DMI, revealing the characteristic 1/thickness dependence with one order of magnitude longer decay length compared to metallic layers. We combine chiral spin structures and spin-orbit torques for efficient switching and identify skyrmions that allow us to establish the GGG/TmIG interface as the origin of the DMI.
Chiral spin textures at the interface between ferromagnetic and heavy nonmagnetic metals, such as Neel-type domain walls and skyrmions, have been studied intensively because of their great potential for future nanomagnetic devices. The Dyzaloshinskii-Moriya interaction (DMI) is an essential phenomenon for the formation of such chiral spin textures. In spite of recent theoretical progress aiming at understanding the microscopic origin of the DMI, an experimental investigation unravelling the physics at stake is still required. Here, we experimentally demonstrate the close correlation of the DMI with the anisotropy of the orbital magnetic moment and with the magnetic dipole moment of the ferromagnetic metal. The density functional theory and the tight-binding model calculations reveal that asymmetric electron occupation in orbitals gives rise to this correlation.
The quantitative roles of the interfacial spin-orbit coupling (SOC) in Dzyaloshinskii-Moriya interaction (DMI) and dampinglike spin-orbit torque ({tau}DL) have remained unsettled after a decade of intensive study. Here, we report a conclusive experiment evidence that, because of the critical role of the interfacial orbital hybridization, the interfacial DMI is not necessarily a linear function of the interfacial SOC, e.g. at Au1-xPtx/Co interfaces where the interfacial SOC can be tuned significantly via strongly composition (x)-dependent spin-orbit proximity effect without varying the bulk SOC and the electronegativity of the Au1-xPtx layer. We also find that {tau}DL in the Au1-xPtx/Co bilayers varies distinctly from the interfacial SOC as a function of x, indicating no important {tau}DL contribution from the interfacial Rashba-Edelstein effect.
Graphene/ferromagnet interface promises a plethora of new science and technology. The interfacial Dzyaloshinskii Moriya interaction (iDMI) is essential for stabilizing chiral spin textures, which are important for future spintronic devices. Here, we report direct observation of iDMI in graphene/Ni80Fe20/Ta heterostructure from non-reciprocity in spin-wave dispersion using Brillouin light scattering (BLS) technique. Linear scaling of iDMI with the inverse of Ni80Fe20 thicknesses suggests primarily interfacial origin of iDMI. Both iDMI and spin-mixing conductance increase with the increase in defect density of graphene obtained by varying argon pressure during sputter deposition of Ni80Fe20. This suggests that the observed iDMI originates from defect-induced extrinsic spin-orbit coupling at the interface. The direct observation of iDMI at graphene/ferromagnet interface without perpendicular magnetic anisotropy opens new route in designing thin film heterostructures based on 2-D materials for controlling chiral spin structure such as skyrmions and bubbles, and magnetic domain-wall-based storage and memory devices.