Do you want to publish a course? Click here

Relational Boosted Bandits

157   0   0.0 ( 0 )
 Added by Ashutosh Kakadiya
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Contextual bandits algorithms have become essential in real-world user interaction problems in recent years. However, these algorithms rely on context as attribute value representation, which makes them unfeasible for real-world domains like social networks are inherently relational. We propose Relational Boosted Bandits(RB2), acontextual bandits algorithm for relational domains based on (relational) boosted trees. RB2 enables us to learn interpretable and explainable models due to the more descriptive nature of the relational representation. We empirically demonstrate the effectiveness and interpretability of RB2 on tasks such as link prediction, relational classification, and recommendations.

rate research

Read More

Contextual Bandits find important use cases in various real-life scenarios such as online advertising, recommendation systems, healthcare, etc. However, most of the algorithms use flat feature vectors to represent context whereas, in the real world, there is a varying number of objects and relations among them to model in the context. For example, in a music recommendation system, the user context contains what music they listen to, which artists create this music, the artist albums, etc. Adding richer relational context representations also introduces a much larger context space making exploration-exploitation harder. To improve the efficiency of exploration-exploitation knowledge about the context can be infused to guide the exploration-exploitation strategy. Relational context representations allow a natural way for humans to specify knowledge owing to their descriptive nature. We propose an adaptation of Knowledge Infused Policy Gradients to the Contextual Bandit setting and a novel Knowledge Infused Policy Gradients Upper Confidence Bound algorithm and perform an experimental analysis of a simulated music recommendation dataset and various real-life datasets where expert knowledge can drastically reduce the total regret and where it cannot.
We consider the quantum version of the bandit problem known as {em best arm identification} (BAI). We first propose a quantum modeling of the BAI problem, which assumes that both the learning agent and the environment are quantum; we then propose an algorithm based on quantum amplitude amplification to solve BAI. We formally analyze the behavior of the algorithm on all instances of the problem and we show, in particular, that it is able to get the optimal solution quadratically faster than what is known to hold in the classical case.
Common-sense physical reasoning in the real world requires learning about the interactions of objects and their dynamics. The notion of an abstract object, however, encompasses a wide variety of physical objects that differ greatly in terms of the complex behaviors they support. To address this, we propose a novel approach to physical reasoning that models objects as hierarchies of parts that may locally behave separately, but also act more globally as a single whole. Unlike prior approaches, our method learns in an unsupervised fashion directly from raw visual images to discover objects, parts, and their relations. It explicitly distinguishes multiple levels of abstraction and improves over a strong baseline at modeling synthetic and real-world videos.
A latent bandit problem is one in which the learning agent knows the arm reward distributions conditioned on an unknown discrete latent state. The primary goal of the agent is to identify the latent state, after which it can act optimally. This setting is a natural midpoint between online and offline learning---complex models can be learned offline with the agent identifying latent state online---of practical relevance in, say, recommender systems. In this work, we propose general algorithms for this setting, based on both upper confidence bounds (UCBs) and Thompson sampling. Our methods are contextual and aware of model uncertainty and misspecification. We provide a unified theoretical analysis of our algorithms, which have lower regret than classic bandit policies when the number of latent states is smaller than actions. A comprehensive empirical study showcases the advantages of our approach.
Users of recommender systems often behave in a non-stationary fashion, due to their evolving preferences and tastes over time. In this work, we propose a practical approach for fast personalization to non-stationary users. The key idea is to frame this problem as a latent bandit, where the prototypical models of user behavior are learned offline and the latent state of the user is inferred online from its interactions with the models. We call this problem a non-stationary latent bandit. We propose Thompson sampling algorithms for regret minimization in non-stationary latent bandits, analyze them, and evaluate them on a real-world dataset. The main strength of our approach is that it can be combined with rich offline-learned models, which can be misspecified, and are subsequently fine-tuned online using posterior sampling. In this way, we naturally combine the strengths of offline and online learning.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا