No Arabic abstract
Many biologically produced chiral molecules such as amino acids and sugars show a preference for left or right handedness (homochirality). Light reflected by biological materials such as algae and leaves therefore exhibits a small amount of circular polarization that strongly depends on wavelength. Our Life Signature Detection polarimeter (LSDpol) is optimized to measure these signatures of life. LSDpol is a compact spectropolarimeter concept with no moving parts that instantaneously measures linear and circular polarization averaged over the field of view with a sensitivity of better than 1e-4. We expect to launch the instrument into orbit after validating its performance on the ground and from aircraft. LSDpol is based on a spatially varying quarter-wave retarder that is implemented with a patterned liquid-crystal. It is the first optical element to maximize the polarimetric sensitivity. Since this pattern as well as the entrance slit of the spectrograph have to be imaged onto the detector, the slit serves as the aperture, and an internal field stop limits the field of view. The retarders fast axis angle varies linearly along one spatial dimension. A fixed quarter-wave retarder combined with a polarization grating act as the disperser and the polarizing beam-splitter. Circular and linear polarization are thereby encoded at incompatible modulation frequencies across the spectrum, which minimizes the potential cross-talk from linear into circular polarization.
A sounding-rocket program called the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is proposed to be launched in the summer of 2014. CLASP will observe the solar chromosphere in Ly-alpha (121.567 nm), aiming to detect the linear polarization signal produced by scattering processes and the Hanle effect for the first time. The polarimeter of CLASP consists of a rotating half-waveplate, a beam splitter, and a polarization analyzer. Magnesium Fluoride (MgF2) is used for these optical components, because MgF2 exhibits birefringent property and high transparency at ultraviolet wavelength.
X-shooter is one of the most popular instruments at the VLT, offering instantaneous spectroscopy from 300 to 2500 nm. We present the design of a single polarimetric unit at the polarization-free Cassegrain focus that serves all three spectrograph arms of X-shooter. It consists of a calcite Savart plate as a polarizing beam-splitter and a rotatable crystal retarder stack as a polychromatic modulator. Since even superachromatic wave plates have a wavelength range that is too limited for X-shooter, this novel modulator is designed to offer close-to-optimal polarimetric efficiencies for all Stokes parameters at all wavelengths. We analyze the modulator design in terms of its polarimetric performance, its temperature sensitivity, and its polarized fringes. Furthermore, we present the optical design of the polarimetric unit. The X-shooter polarimeter will furnish a myriad of science cases: from measuring stellar magnetic fields (e.g., Ap stars, white dwarfs, massive stars) to determining asymmetric structures around young stars and in supernova explosions.
We report on the development of a polarization-sensitive dichroic (150/220 GHz) detector array for the Cosmology Large Angular Scale Surveyor (CLASS) delivered to the telescope site in June 2019. In concert with existing 40 and 90 GHz telescopes, the 150/220 GHz telescope will make observations of the cosmic microwave background over large angular scales aimed at measuring the primordial B-mode signal, the optical depth to reionization, and other fundamental physics and cosmology. The 150/220 GHz focal plane array consists of three detector modules with 1020 transition edge sensor (TES) bolometers in total. Each dual-polarization pixel on the focal plane contains four bolometers to measure the two linear polarization states at 150 and 220 GHz. Light is coupled through a planar orthomode transducer (OMT) fed by a smooth-walled feedhorn array made from an aluminum-silicon alloy (CE7). In this work, we discuss the design, assembly, and in-lab characterization of the 150/220 GHz detector array. The detectors are photon-noise limited, and we estimate the total array noise-equivalent power (NEP) to be 2.5 and 4 aW$sqrt{mathrm{s}}$ for 150 and 220 GHz arrays, respectively.
X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, neutron stars, and gamma-ray bursts. We designed, built and tested a X-ray polarimeter, X-Calibur, to be used in the focal plane of the balloon-borne InFOCuS grazing incidence X-ray telescope. X-Calibur combines a low-Z scatterer with a CZT detector assembly to measure the polarization of 20-80keV X-rays making use of the fact that polarized photons scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of ~80%. The X-Calibur detector assembly is completed, tested, and fully calibrated. The response to a polarized X-ray beam was measured successfully at the Cornell High Energy Synchrotron Source. This paper describes the design, calibration and performance of the X-Calibur polarimeter. In principle, a similar space-borne scattering polarimeter could operate over the broader 2-100keV energy band.
X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polarimeter X-Calibur to be used in the focal plane of the InFOCuS grazing incidence hard X-ray telescope. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 10-80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of order unity.