Do you want to publish a course? Click here

Connes fusion of spinors on loop space

119   0   0.0 ( 0 )
 Added by Konrad Waldorf
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The loop space of a string manifold supports an infinite-dimensional Fock space bundle, which is an analog of the spinor bundle on a spin manifold. This spinor bundle on loop space appears in the description of 2-dimensional sigma models as the bundle of states over the configuration space of the superstring. We construct a product on this bundle covering the fusion of loops, i.e., the merging of two loops along a common segment. For this purpose, we exhibit it as a bundle of bimodules over a certain von Neumann algebra bundle, and realize our product fibrewise using the Connes fusion of von Neumann bimodules. Our main technique is to establish a novel relation between string structures, loop fusion, and the Connes fusion of Fock spaces. The fusion product on the spinor bundle on loop space was proposed by Stolz and Teichner as a part of a programme to explore the relation between generalized cohomology theories, functorial field theories, and index theory. It is related to the pair of pants worldsheet of the superstring, to the extension of the corresponding smooth functorial field theory down to the point, and to a higher-categorical bundle on the underlying string manifold, the stringor bundle.



rate research

Read More

73 - Guido Franchetti 2018
This paper studies the space of $L ^2 $ harmonic forms and $L ^2 $ harmonic spinors on Taub-bolt, a Ricci-flat Riemannian 4-manifold of ALF type. We prove that the space of harmonic square-integrable 2-forms on Taub-bolt is 2-dimensional and construct a basis. We explicitly find a 2-parameter family of $L ^2 $ zero modes of the Dirac operator twisted by an arbitrary $L ^2 $ harmonic connection. We also show that the number of zero modes found is equal to the index of the Dirac operator. We compare our results with those known in the case of Taub-NUT and Euclidean Schwarzschild as these manifolds present interesting similarities with Taub-bolt. In doing so, we slightly generalise known results on harmonic spinors on Euclidean Schwarzschild.
We consider the space of odd spinors on the circle, and a decomposition into spinors supported on either the top or on the bottom half of the circle. If an operator preserves this decomposition, and acts on the bottom half in the same way as a second operator acts on the top half, then the fusion of both operators is a third operator acting on the top half like the first, and on the bottom half like the second. Fusion restricts to the Banach Lie group of restricted orthogonal operators, which supports a central extension of implementers on a Fock space. In this article, we construct a lift of fusion to this central extension. Our construction uses Tomita-Takesaki theory for the Clifford-von Neumann algebras of the decomposed space of spinors. Our motivation is to obtain an operator-algebraic model for the basic central extension of the loop group of the spin group, on which the fusion of implementers induces a fusion product in the sense considered in the context of transgression and string geometry. In upcoming work we will use this model to construct a fusion product on a spinor bundle on the loop space of a string manifold, completing a construction proposed by Stolz and Teichner.
We investigate instantons on manifolds with Killing spinors and their cones. Examples of manifolds with Killing spinors include nearly Kaehler 6-manifolds, nearly parallel G_2-manifolds in dimension 7, Sasaki-Einstein manifolds, and 3-Sasakian manifolds. We construct a connection on the tangent bundle over these manifolds which solves the instanton equation, and also show that the instanton equation implies the Yang-Mills equation, despite the presence of torsion. We then construct instantons on the cones over these manifolds, and lift them to solutions of heterotic supergravity. Amongst our solutions are new instantons on even-dimensional Euclidean spaces, as well as the well-known BPST, quaternionic and octonionic instantons.
We prove a classification result for ground state solutions of the critical Dirac equation on $mathbb{R}^n$, $ngeq2$. By exploiting its conformal covariance, the equation can be posed on the round sphere $mathbb{S}^n$ and the non-zero solutions at the ground level are given by Killing spinors, up to conformal diffeomorphisms. Moreover, such ground state solutions of the critical Dirac equation are also related to the Yamabe equation for the sphere, for which we crucially exploit some known classification results.
Using {it weighted traces} which are linear functionals of the type $$Ato tr^Q(A):=(tr(A Q^{-z})-z^{-1} tr(A Q^{-z}))_{z=0}$$ defined on the whole algebra of (classical) pseudo-differential operators (P.D.O.s) and where $Q$ is some positive invertible elliptic operator, we investigate the geometry of loop groups in the light of the cohomology of pseudo-differential operators. We set up a geometric framework to study a class of infinite dimensional manifolds in which we recover some results on the geometry of loop groups, using again weighted traces. Along the way, we investigate properties of extensions of the Radul and Schwinger cocycles defined with the help of weighted traces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا