Do you want to publish a course? Click here

Sensitivity of a Low-Frequency Polarimetric Radio Interferometer

317   0   0.0 ( 0 )
 Added by Adrian Sutinjo
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims: This paper aims to derive an expression for the sensitivity of a polarimetric radio interferometer that is valid for all-sky observations of arbitrarily polarized sources, with neither a restriction on FoV nor with any a priori assumption regarding the polarization state of the source. We verify the resulting formula with an all-sky observation using the Murchison Widefield Array (MWA) telescope. Methods: The sensitivity expression is developed from first principles by applying the concept of System Equivalent Flux Density (SEFD) to a polarimetric radio interferometer not by computing $A_e/T_{sys}$. The SEFD is calculated from the standard deviation of the noisy flux density estimate for a target source due to system noise. Results: The SEFD for a polarimetric radio interferometer is generally not $1/sqrt{2}$ of a single-polarized interferometer as is often assumed for narrow FoV. This assumption can lead to significant errors for a dual-polarized dipole based system, which is common in low-frequency radio astronomy: up to $sim 15%$ for a zenith angle (ZA) coverage of $45^circ$, and up to $sim45%$ for $60^circ$ coverage. The worst case errors occur in the diagonal planes of the dipole for very wide FoV. This is demonstrated through theory, simulation and observations. Furthermore, using the resulting formulation, calculation of the off-zenith sensitivity is straightforward and unambiguous. Conclusions: For wide FoV observations pertinent to low-frequency radio interferometer such as the SKA-Low, the narrow FoV and the single-polarized sensitivity expressions are not correct and should be replaced by the formula derived in this paper.



rate research

Read More

The radio sky at lower frequencies, particularly below 20 MHz, is expected to be a combination of increasingly bright non-thermal emission and significant absorption from intervening thermal plasma. The sky maps at these frequencies cannot therefore be obtained by simple extrapolation of those at higher frequencies. However, due to severe constraints in ground-based observations, this spectral window still remains greatly unexplored. In this paper, we propose and study, through simulations, a novel minimal configuration for a space interferometer system which would enable imaging of the radio sky at frequencies well below 20 MHz with angular resolutions comparable to those achieved at higher radio frequencies in ground-based observations by using the aperture-synthesis technique. The minimal configuration consists of three apertures aboard Low Earth Orbit (LEO) satellites orbiting the Earth in mutually orthogonal orbits. Orbital periods for the satellites are deliberately chosen to differ from each other so as to obtain maximum (u, v) coverage in short time spans with baselines greater than 15000 km, thus, giving us angular resolutions finer than 10 arcsec even at these low frequencies. The sensitivity of the (u, v) coverage is assessed by varying the orbit and the initial phase of the satellites. We discuss the results obtained from these simulations and highlight the advantages of such a system.
MASER (Measurements, Analysis, and Simulation of Emission in the Radio range) is a comprehensive infrastructure dedicated to time-dependent low frequency radio astronomy (up to about 50 MHz). The main radio sources observed in this spectral range are the Sun, the magnetized planets (Earth, Jupiter, Saturn), and our Galaxy, which are observed either from ground or space. Ground observatories can capture high resolution data streams with a high sensitivity. Conversely, space-borne instruments can observe below the ionospheric cut-off (at about 10 MHz) and can be placed closer to the studied object. Several tools have been developed in the last decade for sharing space physics data. Data visualization tools developed by various institutes are available to share, display and analyse space physics time series and spectrograms. The MASER team has selected a sub-set of those tools and applied them to low frequency radio astronomy. MASER also includes a Python software library for reading raw data from agency archives.
FARSIDE (Farside Array for Radio Science Investigations of the Dark ages and Exoplanets) is a Probe-class concept to place a low radio frequency interferometric array on the farside of the Moon. A NASA-funded design study, focused on the instrument, a deployment rover, the lander and base station, delivered an architecture broadly consistent with the requirements for a Probe mission. This notional architecture consists of 128 dual polarization antennas deployed across a 10 km area by a rover, and tethered to a base station for central processing, power and data transmission to the Lunar Gateway. FARSIDE would provide the capability to image the entire sky each minute in 1400 channels spanning frequencies from 100 kHz to 40 MHz, extending down two orders of magnitude below bands accessible to ground-based radio astronomy. The lunar farside can simultaneously provide isolation from terrestrial radio frequency interference, auroral kilometric radiation, and plasma noise from the solar wind. This would enable near-continuous monitoring of the nearest stellar systems in the search for the radio signatures of coronal mass ejections and energetic particle events, and would also detect the magnetospheres for the nearest candidate habitable exoplanets. Simultaneously, FARSIDE would be used to characterize similar activity in our own solar system, from the Sun to the outer planets, including the hypothetical Planet Nine. Through precision calibration via an orbiting beacon, and exquisite foreground characterization, FARSIDE would also measure the Dark Ages global 21-cm signal at redshifts z=50-100. The unique observational window offered by FARSIDE would enable an abundance of additional science ranging from sounding of the lunar subsurface to characterization of the interstellar medium in the solar system neighborhood.
We report development of a simple and affordable radio interferometer suitable as an educational laboratory experiment. With the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the future generation of astronomers. This interferometer provides the hands-on experience needed to fully understand the basic concepts of interferometry. The design of this interferometer is based on the Michelson & Pease stellar optical interferometer, but operates at a radio wavelength (~11 GHz; ~2.7cm); thus the requirement for optical accuracy is much less stringent. We utilize a commercial broadcast satellite dish and feedhorn. Two flat side mirrors slide on a ladder, providing baseline coverage. This interferometer resolves and measures the diameter of the Sun, a nice daytime experiment which can be carried out even in marginal weather (i.e., partial cloud cover). Commercial broadcast satellites provide convenient point sources for comparison to the Suns extended disk. We describe the mathematical background of the adding interferometer, the design and development of the telescope and receiver system, and measurements of the Sun. We present results from a students laboratory report.
Radio interferometry most commonly involves antennas or antenna arrays of identical design. The identical antenna assumption leads to a convenient and useful mathematical simplification resulting in a scalar problem. An interesting variant to this is a hybrid interferometer involving two designs. We encounter this in the characterization of low-frequency antenna/array prototypes using a homogenous low-frequency array telescope such as the Murchison Widefield Array (MWA). In this work, we present an interferometry equation that applies to hybrid antennas. The resulting equation involves vector inner products rather than scalar multiplications. We discuss physical interpretation and useful applications of this concept in the areas of sensitivity measurement and calibration of an antenna/array under test using a compact calibrator source.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا