No Arabic abstract
MASER (Measurements, Analysis, and Simulation of Emission in the Radio range) is a comprehensive infrastructure dedicated to time-dependent low frequency radio astronomy (up to about 50 MHz). The main radio sources observed in this spectral range are the Sun, the magnetized planets (Earth, Jupiter, Saturn), and our Galaxy, which are observed either from ground or space. Ground observatories can capture high resolution data streams with a high sensitivity. Conversely, space-borne instruments can observe below the ionospheric cut-off (at about 10 MHz) and can be placed closer to the studied object. Several tools have been developed in the last decade for sharing space physics data. Data visualization tools developed by various institutes are available to share, display and analyse space physics time series and spectrograms. The MASER team has selected a sub-set of those tools and applied them to low frequency radio astronomy. MASER also includes a Python software library for reading raw data from agency archives.
Radio interferometry most commonly involves antennas or antenna arrays of identical design. The identical antenna assumption leads to a convenient and useful mathematical simplification resulting in a scalar problem. An interesting variant to this is a hybrid interferometer involving two designs. We encounter this in the characterization of low-frequency antenna/array prototypes using a homogenous low-frequency array telescope such as the Murchison Widefield Array (MWA). In this work, we present an interferometry equation that applies to hybrid antennas. The resulting equation involves vector inner products rather than scalar multiplications. We discuss physical interpretation and useful applications of this concept in the areas of sensitivity measurement and calibration of an antenna/array under test using a compact calibrator source.
Low radio frequency experiments performed on Earth are contaminated by both ionospheric effects and radio frequency interference (RFI) from Earth-based sources. The lunar farside provides a unique environment above the ionosphere where RFI is heavily attenuated by the presence of the Moon. We present electrodynamics simulations of the propagation of radio waves around and through the Moon in order to characterize the level of attenuation on the farside. The simulations are performed for a range of frequencies up to 100 kHz, assuming a spherical lunar shape with an average, constant density. Additionally, we investigate the role of the topography and density profile of the Moon in the propagation of radio waves and find only small effects on the intensity of RFI. Due to the computational demands of performing simulations at higher frequencies, we propose a model for extrapolating the width of the quiet region above 100 kHz that also takes into account height above the lunar surface as well as the intensity threshold chosen to define the quiet region. This model, which we make publicly available through a Python package, allows the size of the radio quiet region to be easily calculated both in orbit or on the surface, making it directly applicable for lunar satellites as well as surface missions.
We present a novel approach for creating science-ready catalogs through a software infrastructure developed for the Dark Energy Survey (DES). We integrate the data products released by the DES Data Management and additional products created by the DES collaboration in an environment known as DES Science Portal. Each step involved in the creation of a science-ready catalog is recorded in a relational database and can be recovered at any time. We describe how the DES Science Portal automates the creation and characterization of lightweight catalogs for DES Year 1 Annual Release, and show its flexibility in creating multiple catalogs with different inputs and configurations. Finally, we discuss the advantages of this infrastructure for large surveys such as DES and the Large Synoptic Survey Telescope. The capability of creating science-ready catalogs efficiently and with full control of the inputs and configurations used is an important asset for supporting science analysis using data from large astronomical surveys.
We examine data from the Murchison Widefield Array (MWA) in the frequency range 72 -- 102 MHz for a field-of-view that serendipitously contained the interstellar object Oumuamua on 2017 November 28. Observations took place with time resolution of 0.5 s and frequency resolution of 10 kHz. %This observation was undertaken for another purpose but due to the MWAs extremely large field-of-view, Oumuamua was serendipitously observed simultaneously. Based on the interesting but highly unlikely suggestion that Oumuamua is an interstellar spacecraft, due to some unusual orbital and morphological characteristics, we examine our data for signals that might indicate the presence of intelligent life associated with Oumuamua. We searched our radio data for: 1) impulsive narrow-band signals; 2) persistent narrow-band signals; and 3) impulsive broadband signals. We found no such signals with non-terrestrial origins and make estimates of the upper limits on Equivalent Isotropic Radiated Power (EIRP) for these three cases of approximately 7 kW, 840 W, and 100 kW, respectively. These transmitter powers are well within the capabilities of human technologies, and are therefore plausible for alien civilizations. While the chances of positive detection in any given Search for Extraterrestrial Intelligence (SETI) experiment are vanishingly small, the characteristics of new generation telescopes such as the MWA (and in the future, the Square Kilometre Array) make certain classes of SETI experiment easy, or even a trivial by-product of astrophysical observations. This means that the future costs of SETI experiments are very low, allowing large target lists to partially balance the low probability of a positive detection.
This review arose from the European Radio Astronomy Technical Forum (ERATec) meeting held in Firenze, October 2015, and aims to highlight the breadth and depth of the high-impact science that will be aided and assisted by the use of simultaneous mm-wavelength receivers. Recent results and opportunities are presented and discussed from the fields of: continuum VLBI (observations of weak sources, astrometry, observations of AGN cores in spectral index and Faraday rotation), spectral line VLBI (observations of evolved stars and massive star-forming regions) and time domain observations of the flux variations arising in the compact jets of X-ray binaries. Our survey brings together a large range of important science applications, which will greatly benefit from simultaneous observing at mm-wavelengths. Such facilities are essential to allow these applications to become more efficient, more sensitive and more scientifically robust. In some cases without simultaneous receivers the science goals are simply unachievable. Similar benefits would exist in many other high frequency astronomical fields of research.