Do you want to publish a course? Click here

Achieving the depairing limit along $c$ axis in Fe$_{1+y}$Te$_{1-x}$Se$_x$ single crystals

171   0   0.0 ( 0 )
 Added by Yue Sun
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the achieving of depairing current limit along $c$-axis in Fe$_{1+y}$Te$_{1-x}$Se$_x$ single crystals. A series of crystals with $T_{rm{c}}$ ranging from 8.6 K to 13.7 K (different amount of excess Fe, $y$) were fabricated into $c$-axis bridges with a square-micrometer cross-section. The critical current density, $J_{rm{c}}$, was directly estimated from the transport current-voltage measurements. The transport $J_{rm{c}}$ reaches a very large value, which is about one order of magnitude larger than the depinning $J_{rm{c}}$, but comparable to the calculated depairing $J_{rm{c}}$ $sim$ 2 $times$ 10$^6$ A/cm$^2$ at 0 K, based on the Ginzburg-Landau (GL) theory. The temperature dependence of the depairing $J_{rm{c}}$ follows the GL-theory ($propto$ (1-$T/T_{rm{c}}$)$^{3/2}$) down to $sim$ 0.83 $T_{rm{c}}$, then increases with a reduced slope at low temperatures, which can be qualitatively described by the Kupriyanov-Lukichev theory. Our study provides a new route to understand the behavior of depairing $J_{rm{c}}$ in iron-based superconductors in a wide temperature range.



rate research

Read More

Superconductivity (SC) with the suppression of long-range antiferromagnetic (AFM) order is observed in the parent compounds of both iron-based and cuprate superconductors. The AFM wave vectors are bicollinear ($pi$, 0) in the parent compound FeTe different from the collinear AFM order ($pi$, $pi$) in most iron pnictides. Study of the phase diagram of Fe$_{1+y}$Te$_{1-x}$Se$_x$ is the most direct way to investigate the competition between bicollinear AFM and SC. However, presence of interstitial Fe affects both magnetism and SC of Fe$_{1+y}$Te$_{1-x}$Se$_x$, which hinders the establishment of the real phase diagram. Here, we report the comparison of doping-temperature ($x$-$T$) phase diagrams for Fe$_{1+y}$Te$_{1-x}$Se$_x$ (0 $leq$ $x$ $leq$ 0.43) single crystals before and after removing interstitial Fe. Without interstitial Fe, the AFM state survives only for $x$ $<$ 0.05, and bulk SC emerges from $x$ = 0.05, and does not coexist with the AFM state. The previously reported spin glass state, and the coexistence of AFM and SC may be originated from the effect of the interstitial Fe. The phase diagram of Fe$_{1+y}$Te$_{1-x}$Se$_x$ is found to be similar to the case of the 1111 system such as LaFeAsO$_{1-x}$F$_x$, and is different from that of the 122 system.
We report an investigation of the lattice dynamical properties in a range of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ compounds, with special emphasis on the c-axis polarized vibration of Fe with B$_{1g}$ symmetry, a Raman active mode common to all families of Fe-based superconductors. We have carried out a systematic study of the temperature dependence of this phonon mode as a function of Se $x$ and excess Fe $y$ concentrations. In parent compound Fe$_{1+y}$Te, we observe an unconventional broadening of the phonon between room temperature and magnetic ordering temperature $T_N$. The situation smoothly evolves towards a regular anharmonic behavior as Te is substituted for Se and long range magnetic order is replaced by superconductivity. Irrespective to Se contents, excess Fe is shown to provide an additional damping channel for the B$_{1g}$ phonon at low temperatures. We performed Density Functional Theory (DFT) ab-initio calculations within the local density approximation (LDA) to calcuate the phonon frequencies including magnetic polarization and Fe non-stoichiometry in the Virtual Crystal Approximation (VCA). We obtained a good agreement with the measured phonon frequencies in the Fe-deficient samples, while the effects of Fe excess are poorly reproduced. This may be due to excess Fe-induced local magnetism and low energy magnetic fluctuations that can not be treated accurately within these approaches. As recently revealed by neutron scattering and $mu$-SR studies, these phenomena occur in the temperature range where anomalous decay of the B$_{1g}$ phonon is observed, and suggests a peculiar coupling of this mode with local moments and spin fluctuations in Fe$_{1+y}$Te$_{1-x}$Se$_{x}$.
Neutron scattering has played a significant role in characterizing magnetic and structural correlations in Fe$_{1+y}$Te$_{1-x}$Se$_x$ and their connections with superconductivity. Here we review several key aspects of the physics of iron chalcogenide superconductors where neutron studies played a key role. These topics include the phase diagram of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$, where the doping-dependence of structural transitions can be understood from a mapping to the anisotropic random field Ising model. We then discuss orbital-selective Mott physics in the Fe chalcogenide series, where temperature-dependent magnetism in the parent material provided one of the earliest cases for orbital-selective correlation effects in a Hunds metal. Finally, we elaborate on the character of local magnetic correlations revealed by neutron scattering, its dependence on temperature and composition, and the connections to nematicity and superconductivity.
The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in recent reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe$_{0.55}$Se$_{0.45}$. An associated puzzle is that the topological features and superconducting properties are not observed uniformly across the sample surface. Understanding and practical control of these electronic inhomogeneities present a prominent challenge for potential applications. Here, we combine neutron scattering, scanning angle-resolved photoemission spectroscopy (ARPES), and microprobe composition and resistivity measurements to characterize the electronic state of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$. We establish a phase diagram in which the superconductivity is observed only at sufficiently low Fe concentration, in association with distinct antiferromagnetic correlations, while the coexisting topological surface state occurs only at sufficiently high Te concentration. We find that FeTe$_{0.55}$Se$_{0.45}$ is located very close to both phase boundaries, which explains the inhomogeneity of superconducting and topological states. Our results demonstrate the compositional control required for use of topological MZMs in practical applications.
Using angle-resolved photoemission spectroscopy we have studied the low-energy electronic structure and the Fermi surface topology of Fe$_{1+y}$Te$_{1-x}$Se$_x$ superconductors. Similar to the known iron pnictides we observe hole pockets at the center and electron pockets at the corner of the Brillouin zone (BZ). However, on a finer level, the electronic structure around the $Gamma$- and $Z$-points in $k$-space is substantially different from other iron pnictides, in that we observe two hole pockets at the $Gamma$-point, and more interestingly only one hole pocket is seen at the $Z$-point, whereas in $1111$-, $111$-, and $122$-type compounds, three hole pockets could be readily found at the zone center. Another major difference noted in the Fe$_{1+y}$Te$_{1-x}$Se$_x$ superconductors is that the top of innermost hole-like band moves away from the Fermi level to higher binding energy on going from $Gamma$ to $Z$, quite opposite to the iron pnictides. The polarization dependence of the observed features was used to aid the attribution of the orbital character of the observed bands. Photon energy dependent measurements suggest a weak $k_z$ dispersion for the outer hole pocket and a moderate $k_z$ dispersion for the inner hole pocket. By evaluating the momentum and energy dependent spectral widths, the single-particle self-energy was extracted and interestingly this shows a pronounced non-Fermi liquid behaviour for these compounds. The experimental observations are discussed in context of electronic band structure calculations and models for the self-energy such as the spin-fermion model and the marginal-Fermi liquid.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا