No Arabic abstract
Luttinger semimetals have quadratic band crossings at the Brillouin zone-center in three spatial dimensions. Coulomb interactions in a model that describes these systems stabilize a non-trivial fixed point associated with a non-Fermi liquid state, also known as the Luttinger-Abrikosov-Beneslavskii phase. We calculate the optical conductivity $sigma (omega) $ and the dc conductivity $sigma_{dc} (T) $ of this phase, by means of the Kubo formula and the Mori-Zwanzig memory matrix method, respectively. Interestingly, we find that $sigma (omega) $, as a function of the frequency $omega$ of an applied ac electric field, is characterized by a small violation of the hyperscaling property in the clean limit, which is in marked contrast to the low-energy effective theories that possess Dirac quasiparticles in the excitation spectrum and obey hyperscaling. Furthermore, the effects of weak short-ranged disorder on the temperature-dependence of $sigma_{dc} (T)$ give rise to a much stronger power-law suppression at low temperatures compared to the clean limit. Our findings demonstrate that these disordered systems are actually power-law insulators. Our theoretical results agree qualitatively with the data from recent experiments performed on Luttinger semimetal compounds like the pyrochlore iridates [ (Y$_{1-x}$Pr$_x$)$_2$Ir$_2$O$_7$ ].
We investigate the interplay of Coulomb interactions and correlated disorder in pseudospin-3/2 semimetals, which exhibit birefringent spectra in the absence of interactions. Coulomb interactions drive the system to a marginal Fermi liquid, both for the two-dimensional (2d) and three-dimensional (3d) cases. Short-ranged correlated disorder and a power-law correlated disorder have the same engineering dimension as the Coulomb term, for the 2d and 3d systems, respectively, in a renormalization group (RG) sense. In order to analyze the combined effects of these two kinds of interactions, we apply a dimensional regularization scheme and derive the RG flow equations. The results show that the marginal Fermi liquid phase is robust against disorder.
We consider theoretically the transport in a one-channel spinless Luttinger liquid with two strong impurities in the presence of dissipation. As a difference with respect to the dissipation free case, where the two impurities fully transmit electrons at resonance points, the dissipation prevents complete transmission in the present situation. A rich crossover diagram for the conductance as a function of applied voltage, temperature, dissipation strength, Luttinger liquid parameter K and the deviation from the resonance condition is obtained. For weak dissipation and 1/2<K<1, the conduction shows a non-monotonic increase as a function of temperature or voltage. For strong dissipation the conduction increases monotonically but is exponentially small.
We construct examples of translationally invariant solvable models of strongly-correlated metals, composed of lattices of Sachdev-Ye-Kitaev dots with identical local interactions. These models display crossovers as a function of temperature into regimes with local quantum criticality and marginal-Fermi liquid behavior. In the marginal Fermi liquid regime, the dc resistivity increases linearly with temperature over a broad range of temperatures. By generalizing the form of interactions, we also construct examples of non-Fermi liquids with critical Fermi-surfaces. The self energy has a singular frequency dependence, but lacks momentum dependence, reminiscent of a dynamical mean field theory-like behavior but in dimensions $d<infty$. In the low temperature and strong-coupling limit, a heavy Fermi liquid is formed. The critical Fermi-surface in the non-Fermi liquid regime gives rise to quantum oscillations in the magnetization as a function of an external magnetic field in the absence of quasiparticle excitations. We discuss the implications of these results for local quantum criticality and for fundamental bounds on relaxation rates. Drawing on the lessons from these models, we formulate conjectures on coarse grained descriptions of a class of intermediate scale non-fermi liquid behavior in generic correlated metals.
We study both noncentrosymmetric and time-reversal breaking Weyl semimetal systems under a strong magnetic field with the Coulomb interaction. The three-dimensional bulk system is reduced to many mutually interacting quasi-one-dimensional wires. Each strongly correlated wire can be approached within the Tomonaga-Luttinger liquid formalism. Including impurity scatterings, we inspect the localization effect and the temperature dependence of the electrical resistivity. The effect of a large number of Weyl points in real materials is also discussed.
Ballistic transport of helical edge modes in two-dimensional topological insulators is protected by time-reversal symmetry. Recently it was pointed out [1] that coupling of non-interacting helical electrons to an array of randomly anisotropic Kondo impurities can lead to a spontaneous breaking of the symmetry and, thus, can remove this protection. We have analyzed effects of the interaction between the electrons using a combination of the functional and the Abelian bosonization approaches. The suppression of the ballistic transport turns out to be robust in a broad range of the interaction strength. We have evaluated the renormalization of the localization length and have found that, for strong interaction, it is substantial. We have identified various regimes of the dc transport and discussed its temperature and sample size dependencies in each of the regimes.