Do you want to publish a course? Click here

Rate-dependent adhesion of viscoelastic contacts. Part II: numerical model and hysteresis dissipation

44   0   0.0 ( 0 )
 Added by Guido Violano
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a numerical model to describe the adhesive normal contact between a rigid spherical indenter and a viscoelastic rough substrate. The model accounts for dissipative process under the assumption that viscoelastic losses are localized at the (micro)-contact lines. Numerical predictions are then compared with experimental measurements, which show a strong adhesion hysteresis mostly due to viscous energy dissipation occurring during pull-off. This hysteresis is satisfactorily described by the contact model which allows to distinguish the energy loss due to material dissipation from the adhesion hysteresis due to elastic instability. Our analysis shows that the pull-off force required to detach the surfaces is strongly influenced by the detachment rate and the rms roughness amplitude, but it is almost unaffected by the maximum load from which unloading starts. Moreover, the increase in the boundary line separating contact and non-contact regions, observed when moving from smooth to rough contacts, negligibly affects the viscous dissipation. Such increase is much less significant than the reduction in contact area, which therefore is the main parameter governing the strong decrease in the effective surface energy.



rate research

Read More

In this work, we investigate dissipative effects involved during the detachment of a smooth spherical glass probe from a viscoelastic silicone substrate patterned with micro-asperities. As a baseline, the pull-off of a single asperity, millimeter-sized contact between a glass lens and a smooth poly(dimethylsiloxane) (PDMS) rubber is first investigated as a function of the imposed detachment velocity. From a measurement of the contact radius a(t) and normal load during unloading, the dependence of the strain energy relase rate G on the velocity of the contact line vc = da/dt is determined under the assumption that viscoelastic dissipation is localized at the edge of the contact. These data are incorporated into Mullers model (V.M. Muller J Adh Sci Tech (1999) 13 999-1016) in order to predict the time-dependence of the contact size. Similar pull-off experiments are carried out with the same PDMS substrate patterned with spherical micro-asperities with a prescribed height distribution. From in situ optical measurements of the micro-contacts, scaling laws are identified for the contact radius a and the contact line velocity vc. On the basis of the observed similarity between macro and microscale contacts, a numerical solution is developed to predict the reduction of the contact radius during unloading.
101 - Richard Villey 2015
The modelling of the adherence energy during peeling of Pressure Sensitive Adhesives (PSA) has received much attention since the 1950s, uncovering several factors that aim at explaining their high adherence on most substrates, such as the softness and strong viscoelastic behaviour of the adhesive, the low thickness of the adhesive layer and its confinement by a rigid backing. The more recent investigation of adhesives by probe-tack methods also revealed the importance of cavitation and stringing mechanisms during debonding, underlining the influence of large deformations and of the related non-linear response of the material, which also intervenes during peeling. Although a global modelling of the complex coupling of all these ingredients remains a formidable issue, we report here some key experiments and modelling arguments that should constitute an important step forward. We first measure a non-trivial dependence of the adherence energy on the loading geometry, namely through the influence of the peeling angle, which is found to be separable from the peeling velocity dependence. This is the first time to our knowledge that such adherence energy dependence on the peeling angle is systematically investigated and unambiguously demonstrated. Secondly, we reveal an independent strong influence of the large strain rheology of the adhesives on the adherence energy. We complete both measurements with a microscopic investigation of the debonding region. We discuss existing modellings in light of these measurements and of recent soft material mechanics arguments, to show that the adherence energy during peeling of PSA should not be associated to the propagation of an interfacial stress singularity. The relevant deformation mechanisms are actually located over the whole adhesive thickness, and the adherence energy during peeling of PSA should rather be associated to the energy loss by viscous friction and by rate-dependent elastic hysteresis.
An experimental system has been found recently, a coagulated CaCO3 suspension system, which shows very variable yield behaviour depending upon how it is tested and, specifically, at what rate it is sheared. At Peclet numbers Pe > 1 it behaves as a simple Herschel Bulkley liquid, whereas at Pe < 1 highly non-monotonic flow curves are seen. In controlled stress testing it shows hysteresis and shear banding and in the usual type of stress scan, used to measure flow curves in controlled stress mode routinely, it can show very erratic and irreproducible behaviour. All of these features will be attributed here to a dependence of the solid phase, or, yield stress, on the prevailing rate of shear at the yield point. Stress growth curves obtained from step strain-rate testing showed that this rate-dependence was a consequence of Peclet number dependent strain softening. At very low Pe, yield was cooperative and the yield strain was order-one, whereas as Pe approached unity, the yield strain reduced to that needed to break interparticle bonds, causing the yield stress to be greatly reduced. It is suspected that rate-dependent yield could well be the rule rather than the exception for cohesive suspensions more generally. If so, then the Herschel-Bulkley equation can usefully be generalized to read (in simple shear). The proposition that rate-dependent yield might be general for cohesive suspensions is amenable to critical experimental testing by a range of means and along lines suggested.
122 - F.G. Mitri , Z.E.A. Fellah 2016
A necessary condition for the validity of the linear viscoelastic model for a (passive) polymeric cylinder with an ultrasonic hysteresis-type absorption submerged in a non-viscous fluid requires that the absorption efficiency is positive (Qabs > 0) satisfying the law of the conservation of energy. This condition imposes restrictions on the values attributed to the normalized absorption coefficients for the compressional and shear-wave wavenumbers for each partial-wave mode n. The forbidden values produce negative axial radiation force, absorption and extinction efficiencies, as well as an enhancement of the scattering efficiency, not in agreement with the conservation of energy law. Numerical results for the radiation force, extinction, absorption and scattering efficiencies are performed for three viscoelastic (VE) polymer cylinders immersed in a non-viscous host liquid (i.e. water) with particular emphasis on the shear-wave absorption coefficient of the cylinder, the dimensionless size parameter and the partial-wave mode number n. Mathematical constraints are established for the non-dimensional absorption coefficients of the longitudinal and shear waves for a cylinder (i.e. 2D case) and a sphere (i.e. 3D case) in terms of the sound velocities in the VE material. The analysis suggests that the domain of validity for any viscoelastic model describing acoustic attenuation inside a lossy cylinder (or sphere) in a non-viscous fluid must be verified based upon the optical theorem.
A model system inspired by recent experiments on the dynamics of a folded protein under the influence of a sinusoidal force is investigated and found to replicate many of the response characteristics of such a system. The essence of the model is a strongly over-damped oscillator described by a harmonic restoring force for small displacements that reversibly yields to stress under sufficiently large displacement. This simple dynamical system also reveals unexpectedly rich behavior, exhibiting a series of dynamical transitions and analogies with equilibrium thermodynamic phase transitions. The effects of noise and of inertia are briefly considered and described.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا