Do you want to publish a course? Click here

Anatomy of Multipath BGP Deployment in a Large ISP Network

73   0   0.0 ( 0 )
 Added by Shi Zhou Dr.
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Multipath routing is useful for networks to achieve load sharing among multiple routing paths. Multipath BGP (MBGP) is a technique to realize inter-domain multipath routing by enabling a BGP router to install multiple equally-good routes to a destination prefix. Most of previous works did not distinguish between intra-domain and inter-domain multipath routing. In this paper, we present a measurement study on the deployment of M-BGP in a large Internet service provider (ISP) network. Our method combines control-plane BGP measurements using Looking Glasses (LG), and data-plane traceroute measurements using RIPE Atlas. We focus on Hurricane Electric (AS6939) because it is a global ISP that connects with hundreds of major exchange points and exchanges IP traffic with thousands of different networks. And more importantly, we find that this ISP has by far the largest number of M-BGP deployments among autonomous systems with LG servers. Specifically, Hurricane Electric has deployed M-BGP with 512 of its peering ASes at 58 PoPs around the world, including many top ASes and content providers. We also observe that most of its M-BGP deployments involve IXP interconnections. Our work provides insights into the latest deployment of M-BGP in a major ISP network and it highlights the characteristics and effectiveness of M-BGP as a means to realize load sharing.



rate research

Read More

Multipath BGP (M-BGP) allows a BGP router to install multiple equally-good paths, via parallel inter-domain border links, to a destination prefix. M-BGP differs from the multipath routing techniques in many ways, e.g. M-BGP is only implemented at border routers of Autonomous Systems (ASes); and while it shares traffic to different IP addresses in a destination prefix via different border links, any traffic to a given destination IP always follows the same border link. Recently we studied Looking Glass data and reported the wide deployment of M-BGP in the Internet; in particular, Hurricane Electric (AS6939) has implemented over 1,000 cases of M-BGP to hundreds of its peering ASes. In this paper, we analyzed the performance of M-BGP. We used RIPE Atlas to send traceroute probes to a series of destination prefixes through Hurricane Electrics border routers implemented with M-BGP. We examined the distribution of Round Trip Time to each probed IP address in a destination prefix and their variation during the measurement. We observed that the deployment of M-BGP can guarantee stable routing between ASes and enhance a networks resilience to traffic changes. Our work provides insights into the unique characteristics of M-BGP as an effective technique for load balancing.
BGP-Multipath (BGP-M) is a multipath routing technique for load balancing. Distinct from other techniques deployed at a router inside an Autonomous System (AS), BGP-M is deployed at a border router that has installed multiple inter-domain border links to a neighbour AS. It uses the equal-cost multi-path (ECMP) function of a border router to share traffic to a destination prefix on different border links. Despite recent research interests in multipath routing, there is little study on BGP-M. Here we provide the first measurement and a comprehensive analysis of BGP-M routing in the Internet. We extracted information on BGP-M from query data collected from Looking Glass (LG) servers. We revealed that BGP-M has already been extensively deployed and used in the Internet. A particular example is Hurricane Electric (AS6939), a Tier-1 network operator, which has implemented >1,000 cases of BGP-M at 69 of its border routers to prefixes in 611 of its neighbour ASes, including many hyper-giant ASes and large content providers, on both IPv4 and IPv6 Internet. We examined the distribution and operation of BGP-M. We also ran traceroute using RIPE Atlas to infer the routing paths, the schemes of traffic allocation, and the delay on border links. This study provided the state-of-the-art knowledge on BGP-M with novel insights into the unique features and the distinct advantages of BGP-M as an effective and readily available technique for load balancing.
The Internet is inherently a multipath network---for an underlying network with only a single path connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault-tolerance (through the use of multiple paths in backup/ redundant arrangements). There are many emerging trends in networking that signify that the Internets future will be unmistakably multipath, including the use of multipath technology in datacenter computing; multi-interface, multi-channel, and multi-antenna trends in wireless; ubiquity of mobile devices that are multi-homed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as MP-TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely the control plane problem of how to compute and select the routes, and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work.
130 - Yoo Chung 2011
To understand the factors that encourage the deployment of a new networking technology, we must be able to model how such technology gets deployed. We investigate how network structure influences deployment with a simple deployment model and different network models through computer simulations. The results indicate that a realistic model of networking technology deployment should take network structure into account.
Currently, we have witnessed a myriad of solutions that benefit from programmable hardware. The 5G Core (5GC) can and should also benefit from such paradigm to offload certain functions to the dataplane. In this work, we designed and implemented a P4-based solution for traffic identification and chaining using the Netronome Agilo SmartNIC. The solution here presented is deployed in-between the RAN and UPF (User Plane Function) so that traffic coming from the RAN is identified and chained using SRv6 based on different rules defined by the control plane. The traffic identification and the construction of the SRv6 list of segments are done entirely in the SmartNIC. A minimalist Proof-of-Concept (PoC) was deployed and evaluated to show that this function is perfectly capable to build service function chainings in a transparent and efficient way.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا