Do you want to publish a course? Click here

ALMA chemical survey of disk-outflow sources in Taurus (ALMA-DOT) V: Sample, overview, and demography of disk molecular emission

92   0   0.0 ( 0 )
 Added by Antonio Garufi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an overview of the ALMA chemical survey of disk-outflow sources in Taurus (ALMA-DOT), a campaign devoted to the characterization of the molecular emission from partly embedded, young stars. The project aims at better understanding the gaseous products that are delivered to planets by means of high-resolution maps of assorted lines probing disks at the time of the planet formation (less than 1 Myr). Nine different molecules are surveyed by our observations of six Class I/flat-spectrum sources. A series of accompanying articles analyze specific targets and molecules. Here we describe the sample and provide a general overview of the results, focusing on the spatial distribution, column densities, and abundance ratios of H$_2$CO, CS, and CN. The results of this work are a first step toward the characterization of the disk chemical evolution that need to be complemented by further observations of less exceptional disks and customized thermo-chemical modeling.



rate research

Read More

104 - L. Podio , A. Garufi , C. Codella 2020
Planets form in protoplanetary disks and inherit their chemical composition. It is therefore crucial to understand the disks molecular content. We aim to characterize the distribution and abundance of molecules in the disk of DG Tau. In the context of the ALMA chemical survey of Disk-Outflow sources in Taurus (ALMA-DOT) we analyse ALMA observations of the disk of DG Tau in H2CO 3(1,2)-2(1,1), CS 5-4, and CN 2-1 at ~0.15, i.e. ~18 au at 121 pc. H2CO and CS originate from a disk ring at the edge of the 1.3mm dust continuum, with CS probing an outer disk region with respect to H2CO (peaking at ~70 and ~60 au, respectively). CN originates from an outermost disk/envelope region peaking at ~80 au. H2CO is dominated by disk emission, while CS probes also two streams of material possibly accreting onto the disk with a peak of emission where the stream connects to the disk. The ring- and disk-height- averaged column densities are ~2.4-8.6e13 cm-2 (H2CO), ~1.7-2.5e13 cm-2 (CS), and ~1.9-4.7e13 cm-2 (CN). Unsharp masking reveals a ring of enhanced dust emission at ~40 au, i.e. just outside the CO snowline (~30 au). CS and H2CO emissions are co-spatial suggesting that they are chemically linked. The observed rings of molecular emission at the edge of the 1.3mm continuum may be due to dust opacity effects and/or continnum over-subtraction in the inner disk; as well as to increased UV penetration and/or temperature inversion at the edge of the mm-dust which would cause an enhanced gas-phase formation and desorption of these molecules. Moreover, H2CO and CS originate from outside the ring of enhanced dust emission, which also coincides with a change of the linear polarization at 0.87mm. This suggests that outside the CO snowline there could be a change of the dust properties which would reflect in the increase of the intensity (and change of polarization) of continuum, and of molecular emission.
138 - C. Codella , L. Podio , A. Garufi 2020
Aims: To trace the radial and vertical spatial distribution of H2CS, a key species of the S-bearing chemistry, in protoplanetary disks. To analyse the observed distributions in light of the H2CS binding energy, in order to discuss the role of thermal desorption in enriching the gas disk component. Methods: In the context of the ALMA chemical survey of Disk-Outflow sources in the Taurus star forming region (ALMA-DOT), we observed five Class I or early Class II sources with the o-H2CS(7_1,6-6_1,5) line on a 40 au scale. We estimated the binding energy (BEs) of H2CS using quantum mechanical calculations, for the first time, for an extended, periodic, crystalline ice. Results: We imaged H2CS in two rotating molecular rings in the HL Tau and IRAS04302+2247 disks. The outer radii are about 140 au (HL Tau), and 115 au (IRAS 04302+2247). The edge-on geometry of IRAS 04302+2247 reveals that H2CS emission peaks, at radii of 60-115 au, at z = +- 50 au from the equatorial plane. The column densities are about 10^14 cm^-2. For HL Tau, we derive, for the first time, the [H2CS]/[H] abundance in a protoplanetary disk (about 10^-14). The BEs of H2CS computed for extended crystalline ice and amorphous ices is 4258 K and 3000-4600 K, respectively, implying a thermal evaporation where dust temperature is larger than 50-80 K. Conclusions: H2CS traces the so-called warm molecular layer, a region previously sampled using CS, and H2CO. Thioformaldehyde peaks closer to the protostar than H2CO and CS, plausibly due to the relatively high-excitation level of observed 7_1,6-6_1,5 line (60 K). The H2CS BEs implies that thermal desorption dominates in thin, au-sized, inner and/or upper disk layers, indicating that the observed H2CS emitting up to radii larger than 100 au is likely injected in the gas due to non-thermal processes.
99 - L. Podio , A. Garufi , C. Codella 2020
The chemical composition of planets is inherited from that of the protoplanetary disk at the time of planet formation. Increasing observational evidence suggests that planet formation occurs in less than 1 Myr. This motivates the need for spatially resolved spectral observations of Class I disks, as carried out by the ALMA chemical survey of Disk-Outflow sources in Taurus (ALMA-DOT). In the context of ALMA-DOT, we observe the edge-on disk around the Class I source IRAS 04302+2247 (the butterfly star) in the 1.3mm continuum and five molecular lines. We report the first tentative detection of methanol (CH$_3$OH) in a Class I disk and resolve, for the first time, the vertical structure of a disk with multiple molecular tracers. The bulk of the emission in the CO 2-1, CS 5-4, and o-H$_2$CO 3(1,2)-2(1,1) lines originates from the warm molecular layer, with the line intensity peaking at increasing disk heights, $z$, for increasing radial distances, $r$. Molecular emission is vertically stratified, with CO observed at larger disk heights (aperture $z/rsim0.41-0.45$) compared to both CS and H$_2$CO, which are nearly cospatial ($z/rsim0.21-0.28$). In the outer midplane, the line emission decreases due to molecular freeze-out onto dust grains (freeze-out layer) by a factor of >100 (CO) and 15 (CS). The H$_2$CO emission decreases by a factor of only about 2, which is possibly due to H$_2$CO formation on icy grains, followed by a nonthermal release into the gas phase. The inferred [CH$_3$OH]/[H$_2$CO] abundance ratio is 0.5-0.6, which is 1-2 orders of magnitude lower than for Class 0 hot corinos, and a factor ~2.5 lower than the only other value inferred for a protoplanetary disk (in TW Hya, 1.3-1.7). Additionally, it is at the lower edge but still consistent with the values in comets. This may indicate that some chemical reprocessing occurs in disks before the formation of planets and comets.
We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm observations of four young, eruptive star-disk systems at 0.4 resolution: two FUors (V582 Aur and V900 Mon), one EXor (UZ Tau E) and one source with an ambiguous FU/EXor classification (GM Cha). The disks around GM Cha, V900 Mon and UZ Tau E are resolved. These observations increase the sample of FU/EXors observed at sub-arcsecond resolution by 15%. The disk sizes and masses of FU/EXors objects observed by ALMA so far suggest that FUor disks are more massive than Class 0/I disks in Orion and Class II disks in Lupus of similar size. EXor disks in contrast do not seem to be distinguishable from these two populations. We reach similar conclusions when comparing the FU/EXor sample to the Class I and Class II disks in Ophiuchus. FUor disks around binaries are host to more compact disks than those in single-star systems, similar to non-eruptive young disks. We detect a wide-angle outflow around GM Cha in $^{12}$CO emission, wider than typical Class I objects and more similar to those found around some FUor objects. We use radiative transfer models to fit the continuum and line data of the well-studied disk around UZ Tau E. The line data is well described by a keplerian disk, with no evidence of outflow activity (similar to other EXors). The detection of wide-angle outflows in FUors and not in EXors support to the current picture in which FUors are more likely to represent an accretion burst in the protostellar phase (Class I), while EXors are smaller accretion events in the protoplanetary (Class II) phase.
We present a high-resolution ($sim0.12$, $sim16$ au, mean sensitivity of $50~mu$Jy~beam$^{-1}$ at 225 GHz) snapshot survey of 32 protoplanetary disks around young stars with spectral type earlier than M3 in the Taurus star-forming region using Atacama Large Millimeter Array (ALMA). This sample includes most mid-infrared excess members that were not previously imaged at high spatial resolution, excluding close binaries and highly extincted objects, thereby providing a more representative look at disk properties at 1--2 Myr. Our 1.3 mm continuum maps reveal 12 disks with prominent dust gaps and rings, 2 of which are around primary stars in wide binaries, and 20 disks with no resolved features at the observed resolution (hereafter smooth disks), 8 of which are around the primary star in wide binaries. The smooth disks were classified based on their lack of resolved substructures, but their most prominent property is that they are all compact with small effective emission radii ($R_{rm eff,95%} lesssim 50$ au). In contrast, all disks with $R_{rm eff,95%}$ of at least 55 au in our sample show detectable substructures. Nevertheless, their inner emission cores (inside the resolved gaps) have similar peak brightness, power law profiles, and transition radii to the compact smooth disks, so the primary difference between these two categories is the lack of outer substructures in the latter. These compact disks may lose their outer disk through fast radial drift without dust trapping, or they might be born with small sizes. The compact dust disks, as well as the inner disk cores of extended ring disks, that look smooth at the current resolution will likely show small-scale or low-contrast substructures at higher resolution. The correlation between disk size and disk luminosity correlation demonstrates that some of the compact disks are optically thick at millimeter wavelengths.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا