Do you want to publish a course? Click here

ALMA Observations of Young Eruptive Stars: continuum disk sizes and molecular outflows

397   0   0.0 ( 0 )
 Added by Sebastian Perez Dr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm observations of four young, eruptive star-disk systems at 0.4 resolution: two FUors (V582 Aur and V900 Mon), one EXor (UZ Tau E) and one source with an ambiguous FU/EXor classification (GM Cha). The disks around GM Cha, V900 Mon and UZ Tau E are resolved. These observations increase the sample of FU/EXors observed at sub-arcsecond resolution by 15%. The disk sizes and masses of FU/EXors objects observed by ALMA so far suggest that FUor disks are more massive than Class 0/I disks in Orion and Class II disks in Lupus of similar size. EXor disks in contrast do not seem to be distinguishable from these two populations. We reach similar conclusions when comparing the FU/EXor sample to the Class I and Class II disks in Ophiuchus. FUor disks around binaries are host to more compact disks than those in single-star systems, similar to non-eruptive young disks. We detect a wide-angle outflow around GM Cha in $^{12}$CO emission, wider than typical Class I objects and more similar to those found around some FUor objects. We use radiative transfer models to fit the continuum and line data of the well-studied disk around UZ Tau E. The line data is well described by a keplerian disk, with no evidence of outflow activity (similar to other EXors). The detection of wide-angle outflows in FUors and not in EXors support to the current picture in which FUors are more likely to represent an accretion burst in the protostellar phase (Class I), while EXors are smaller accretion events in the protoplanetary (Class II) phase.



rate research

Read More

FU Orionis-type stars are young stellar objects showing large outbursts due to highly enhanced accretion from the circumstellar disk onto the protostar. FUor-type outbursts happen in a wide variety of sources from the very embedded ones to those with almost no sign of extended emission beyond the disk. The subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. We used VLT/VISIR to obtain the first spectra that cover the 8-13 $mu$m mid-infrared wavelength range in low-resolution of five recently discovered FUors. Four objects from our sample show the 10 $mu$m silicate feature in emission. We study the shape and strength of the silicate feature in these objects and find that they mostly contain large amorphous grains, suggesting that large grains are typically not settled to the midplane in FUor disks. This is a general characteristic of FUors, as opposed to regular T Tauri-type stars whose disks display anything from pristine small grains to significant grain growth. We classify our targets by determining whether the silicate feature is in emission or in absorption, and confront them with the evolutionary scenarios on the dispersal of the envelopes around young stars. In our sample, all Class II objects exhibit silicate emission, while for Class I objects, the appearance of the feature in emission or absorption depends on the viewing angle with respect to the outflow cavity. This highlights the importance of geometric effects when interpreting the silicate feature.
Physical processes that govern the star and planet formation sequence influence the chemical composition and evolution of protoplanetary disks. To understand the chemical composition of protoplanets, we need to constrain the composition and structure of the disks from whence they are formed. We aim to determine the molecular abundance structure of the young disk around the TMC1A protostar on au scales in order to understand its chemical structure and any possible implications for disk formation. We present spatially resolved Atacama Large Millimeter/submillimeter Array observations of CO, $HCO^{+}$, HCN, DCN, and SO line emission, as well as dust continuum emission, in the vicinity of TMC1A. Molecular column densities are estimated both under the assumption of optically thin emission from molecules in LTE as well as through more detailed non-LTE radiative transfer calculations. Resolved dust continuum emission from the disk is detected between 220 and 260 GHz. Rotational transitions from HCO$^{+}$, HCN, and SO are also detected from the inner 100 au region. From the derived $HCO^{+}$ abundance, we estimate the ionization fraction of the disk surface and find values that imply that the accretion process is not driven by the magneto-rotational instability. The molecular abundances averaged over the TMC1A disk are similar to its protostellar envelope and other, older Class II disks. We meanwhile find a discrepancy between the young disks molecular abundances relative to Solar System objects. Abundance comparisons between the disk and its surrounding envelope for several molecular species reveal that the bulk of planet-forming material enters the disk unaltered. Differences in HCN and $H_2 O$ molecular abundances between the disk around TMC1A, Class II disks, and Solar System objects trace the chemical evolution during disk and planet formation.
We analyze a sample of 12 HST-selected edge-on protoplanetary disks for which the vertical extent of the emission layers can be constrained directly. We present ALMA high angular resolution continuum images (0.1arcsec) of these disks at two wavelengths, 0.89mm and 2.06mm (respectively ALMA bands 7 and 4), supplemented with archival band 6 data (1.33mm) where available. For most sources, the millimeter continuum emission is more compact than the scattered light, both in the vertical and radial directions. Six sources are resolved along their minor axis in at least one millimeter band, providing direct information on the vertical distribution of the millimeter grains. For the second largest disk of the sample, the significant difference in vertical extent between band 7 and band 4 suggests efficient size-selective vertical settling of large grains. Furthermore, the only Class I object in our sample shows evidence of flaring in the millimeter. Along the major axis, all disks are well resolved. Four of them are larger in band 7 than in band 4 in the radial direction, and three have a similar radial extent in all bands. For all disks, we also derive the millimeter brightness temperature and spectral index maps. We find that the disks are likely optically thick and that the dust emission reveals low brightness temperatures in most cases (<10K). The integrated spectral indices are similar to those of disks at lower inclination. The comparison of a generic radiative transfer disk model with our data shows that at least 3 disks are consistent with a small millimeter dust scale height, of a few au (measured at r=100au). This is in contrast with the more classical value of h_gsim10au derived from scattered light images and from gas line measurements. These results confirm, by direct observations, that large (millimeter) grains are subject to significant vertical settling in protoplanetary disks.
We present 870 $mu$m ALMA observations of polarized dust emission toward the Class II protoplanetary disk IM Lup. We find that the orientation of the polarized emission is along the minor axis of the disk, and that the value of the polarization fraction increases steadily toward the center of the disk, reaching a peak value of ~1.1%. All of these characteristics are consistent with models of self-scattering of submillimeter-wave emission from an optically thin inclined disk. The distribution of the polarization position angles across the disk reveals that while the average orientation is along the minor axis, the polarization orientations show a significant spread in angles; this can also be explained by models of pure scattering. We compare the polarization with that of the Class I/II source HL Tau. A comparison of cuts of the polarization fraction across the major and minor axes of both sources reveals that IM Lup has a substantially higher polarization fraction than HL Tau toward the center of the disk. This enhanced polarization fraction could be due a number of factors, including higher optical depth in HL Tau, or scattering by larger dust grains in the more evolved IM Lup disk. However, models yield similar maximum grain sizes for both HL Tau (72 $mu$m) and IM Lup (61 $mu$m, this work). This reveals continued tension between grain-size estimates from scattering models and from models of the dust emission spectrum, which find that the bulk of the (unpolarized) emission in disks is most likely due to millimeter (or even centimeter) sized grains.
70 - A. Moor , M. Cure , A. Kospal 2017
According to the current paradigm of circumstellar disk evolution, gas-rich primordial disks evolve into gas-poor debris disks compose of second-generation dust. To explore the transition between these phases, we searched for $^{12}$CO, $^{13}$CO, and C$^{18}$O emission in seven dust-rich debris disks around young A-type stars, using ALMA in Band 6. We discovered molecular gas in three debris disks. In all these disks, the $^{12}$CO line was optically thick, highlighting the importance of less abundant molecules in reliable mass estimates. Supplementing our target list by literature data, we compiled a volume-limited sample of dust-rich debris disks around young A-type stars within 150 pc. We obtained a CO detection rate of 11/16 above a $^{12}$CO J=2$-$1 line luminosity threshold of $sim 1.4 times 10 ^4$ Jykms$^{-1}$pc$^2$ in the sample. This high incidence implies that the presence of CO gas in bright debris disks around young A-type stars is likely more the rule than the exception. Interestingly, dust-rich debris disks around young FG-type stars exhibit, with the same detectability threshold as for A-type stars, significantly lower gas incidence. While the transition from protoplanetary to debris phase is associated with a drop of dust content, our results exhibit a large spread in the CO mass in our debris sample, with peak values comparable to those in protoplanetary Herbig Ae disks. In the particularly CO-rich debris systems the gas may have primordial origin, characteristic of a hybrid disk.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا