No Arabic abstract
We investigate the optimal portfolio deleveraging (OPD) problem with permanent and temporary price impacts, where the objective is to maximize equity while meeting a prescribed debt/equity requirement. We take the real situation with cross impact among different assets into consideration. The resulting problem is, however, a non-convex quadratic program with a quadratic constraint and a box constraint, which is known to be NP-hard. In this paper, we first develop a successive convex optimization (SCO) approach for solving the OPD problem and show that the SCO algorithm converges to a KKT point of its transformed problem. Second, we propose an effective global algorithm for the OPD problem, which integrates the SCO method, simple convex relaxation and a branch-and-bound framework, to identify a global optimal solution to the OPD problem within a pre-specified $epsilon$-tolerance. We establish the global convergence of our algorithm and estimate its complexity. We also conduct numerical experiments to demonstrate the effectiveness of our proposed algorithms with both the real data and the randomly generated medium- and large-scale OPD problem instances.
A price-maker company extracts an exhaustible commodity from a reservoir, and sells it instantaneously in the spot market. In absence of any actions of the company, the commoditys spot price evolves either as a drifted Brownian motion or as an Ornstein-Uhlenbeck process. While extracting, the company affects the market price of the commodity, and its actions have an impact on the dynamics of the commoditys spot price. The company aims at maximizing the total expected profits from selling the commodity, net of the total expected proportional costs of extraction. We model this problem as a two-dimensional degenerate singular stochastic control problem with finite fuel. To determine its solution, we construct an explicit solution to the associated Hamilton-Jacobi-Bellman equation, and then verify its actual optimality through a verification theorem. On the one hand, when the (uncontrolled) price is a drifted Brownian motion, it is optimal to extract whenever the current price level is larger or equal than an endogenously determined constant threshold. On the other hand, when the (uncontrolled) price evolves as an Ornstein-Uhlenbeck process, we show that the optimal extraction rule is triggered by a curve depending on the current level of the reservoir. Such a curve is a strictly decreasing $C^{infty}$-function for which we are able to provide an explicit expression. Finally, our study is complemented by a theoretical and numerical analysis of the dependency of the optimal extraction strategy and value function on the models parameters.
Mean-variance portfolio optimization problems often involve separable nonconvex terms, including penalties on capital gains, integer share constraints, and minimum position and trade sizes. We propose a heuristic algorithm for this problem based on the alternating direction method of multipliers (ADMM). This method allows for solve times in tens to hundreds of milliseconds with around 1000 securities and 100 risk factors. We also obtain a bound on the achievable performance. Our heuristic and bound are both derived from similar results for other optimization problems with a separable objective and affine equality constraints. We discuss a concrete implementation in the case where the separable terms in the objective are piecewise-quadratic, and we demonstrate their effectiveness empirically in realistic tax-aware portfolio construction problems.
The paper solves the problem of optimal portfolio choice when the parameters of the asset returns distribution, like the mean vector and the covariance matrix are unknown and have to be estimated by using historical data of the asset returns. The new approach employs the Bayesian posterior predictive distribution which is the distribution of the future realization of the asset returns given the observable sample. The parameters of the posterior predictive distributions are functions of the observed data values and, consequently, the solution of the optimization problem is expressed in terms of data only and does not depend on unknown quantities. In contrast, the optimization problem of the traditional approach is based on unknown quantities which are estimated in the second step leading to a suboptimal solution. We also derive a very useful stochastic representation of the posterior predictive distribution whose application leads not only to the solution of the considered optimization problem, but provides the posterior predictive distribution of the optimal portfolio return used to construct a prediction interval. A Bayesian efficient frontier, a set of optimal portfolios obtained by employing the posterior predictive distribution, is constructed as well. Theoretically and using real data we show that the Bayesian efficient frontier outperforms the sample efficient frontier, a common estimator of the set of optimal portfolios known to be overoptimistic.
In this paper, we study an irreversible investment problem under Knightian uncertainty. In a general framework, in which Knightian uncertainty is modeled through a set of multiple priors, we prove existence and uniqueness of the optimal investment plan, and derive necessary and sufficient conditions for optimality. This allows us to construct the optimal policy in terms of the solution to a stochastic backward equation under the worst-case scenario. In a time-homogeneous setting - where risk is driven by a geometric Brownian motion and Knightian uncertainty is realized through a so-called k-ignorance - we are able to provide the explicit form of the optimal irreversible investment plan.
In this paper we study the optimization problem of an economic agent who chooses a job and the time of retirement as well as consumption and portfolio of assets. The agent is constrained in the ability to borrow against future income. We transform the problem into a dual two-person zero-sum game, which involves a controller, who is a minimizer and chooses a non-increasing process, and a stopper, who is a maximizer and chooses a stopping time. We derive the Hamilton-Jacobi- Bellman quasi-variational inequality(HJBQV) of a max-min type arising from the game. We provide a solution to the HJBQV and verification that it is the value of the game. We establish a duality result which allows to derive the optimal strategies and value function of the primal problem from those of the dual problem.