Do you want to publish a course? Click here

Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation

338   0   0.0 ( 0 )
 Added by Junliang Yu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Session-based recommendation (SBR) focuses on next-item prediction at a certain time point. As user profiles are generally not available in this scenario, capturing the user intent lying in the item transitions plays a pivotal role. Recent graph neural networks (GNNs) based SBR methods regard the item transitions as pairwise relations, which neglect the complex high-order information among items. Hypergraph provides a natural way to capture beyond-pairwise relations, while its potential for SBR has remained unexplored. In this paper, we fill this gap by modeling session-based data as a hypergraph and then propose a hypergraph convolutional network to improve SBR. Moreover, to enhance hypergraph modeling, we devise another graph convolutional network which is based on the line graph of the hypergraph and then integrate self-supervised learning into the training of the networks by maximizing mutual information between the session representations learned via the two networks, serving as an auxiliary task to improve the recommendation task. Since the two types of networks both are based on hypergraph, which can be seen as two channels for hypergraph modeling, we name our model textbf{DHCN} (Dual Channel Hypergraph Convolutional Networks). Extensive experiments on three benchmark datasets demonstrate the superiority of our model over the SOTA methods, and the results validate the effectiveness of hypergraph modeling and self-supervised task. The implementation of our model is available at https://github.com/xiaxin1998/DHCN



rate research

Read More

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via https://github.com/Coder-Yu/RecQ.
Session-based recommendation targets next-item prediction by exploiting user behaviors within a short time period. Compared with other recommendation paradigms, session-based recommendation suffers more from the problem of data sparsity due to the very limited short-term interactions. Self-supervised learning, which can discover ground-truth samples from the raw data, holds vast potentials to tackle this problem. However, existing self-supervised recommendation models mainly rely on item/segment dropout to augment data, which are not fit for session-based recommendation because the dropout leads to sparser data, creating unserviceable self-supervision signals. In this paper, for informative session-based data augmentation, we combine self-supervised learning with co-training, and then develop a framework to enhance session-based recommendation. Technically, we first exploit the session-based graph to augment two views that exhibit the internal and external connectivities of sessions, and then we build two distinct graph encoders over the two views, which recursively leverage the different connectivity information to generate ground-truth samples to supervise each other by contrastive learning. In contrast to the dropout strategy, the proposed self-supervised graph co-training preserves the complete session information and fulfills genuine data augmentation. Extensive experiments on multiple benchmark datasets show that, session-based recommendation can be remarkably enhanced under the regime of self-supervised graph co-training, achieving the state-of-the-art performance.
With the prevalence of social media, there has recently been a proliferation of recommenders that shift their focus from individual modeling to group recommendation. Since the group preference is a mixture of various predilections from group members, the fundamental challenge of group recommendation is to model the correlations among members. Existing methods mostly adopt heuristic or attention-based preference aggregation strategies to synthesize group preferences. However, these models mainly focus on the pairwise connections of users and ignore the complex high-order interactions within and beyond groups. Besides, group recommendation suffers seriously from the problem of data sparsity due to severely sparse group-item interactions. In this paper, we propose a self-supervised hypergraph learning framework for group recommendation to achieve two goals: (1) capturing the intra- and inter-group interactions among users; (2) alleviating the data sparsity issue with the raw data itself. Technically, for (1), a hierarchical hypergraph convolutional network based on the user- and group-level hypergraphs is developed to model the complex tuplewise correlations among users within and beyond groups. For (2), we design a double-scale node dropout strategy to create self-supervision signals that can regularize user representations with different granularities against the sparsity issue. The experimental analysis on multiple benchmark datasets demonstrates the superiority of the proposed model and also elucidates the rationality of the hypergraph modeling and the double-scale self-supervision.
176 - Dou Hu , Lingwei Wei , Wei Zhou 2021
Session-based recommendation aims to predict user the next action based on historical behaviors in an anonymous session. For better recommendations, it is vital to capture user preferences as well as their dynamics. Besides, user preferences evolve over time dynamically and each preference has its own evolving track. However, most previous works neglect the evolving trend of preferences and can be easily disturbed by the effect of preference drifting. In this paper, we propose a novel Preference Evolution Networks for session-based Recommendation (PEN4Rec) to model preference evolving process by a two-stage retrieval from historical contexts. Specifically, the first-stage process integrates relevant behaviors according to recent items. Then, the second-stage process models the preference evolving trajectory over time dynamically and infer rich preferences. The process can strengthen the effect of relevant sequential behaviors during the preference evolution and weaken the disturbance from preference drifting. Extensive experiments on three public datasets demonstrate the effectiveness and superiority of the proposed model.
Different from the traditional recommender system, the session-based recommender system introduces the concept of the session, i.e., a sequence of interactions between a user and multiple items within a period, to preserve the users recent interest. The existing work on the session-based recommender system mainly relies on mining sequential patterns within individual sessions, which are not expressive enough to capture more complicated dependency relationships among items. In addition, it does not consider the cross-session information due to the anonymity of the session data, where the linkage between different sessions is prevented. In this paper, we solve these problems with the graph neural networks technique. First, each session is represented as a graph rather than a linear sequence structure, based on which a novel Full Graph Neural Network (FGNN) is proposed to learn complicated item dependency. To exploit and incorporate cross-session information in the individual sessions representation learning, we further construct a Broadly Connected Session (BCS) graph to link different sessions and a novel Mask-Readout function to improve session embedding based on the BCS graph. Extensive experiments have been conducted on two e-commerce benchmark datasets, i.e., Yoochoose and Diginetica, and the experimental results demonstrate the superiority of our proposal through comparisons with state-of-the-art session-based recommender models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا