Do you want to publish a course? Click here

Multi-Scale Cascading Network with Compact Feature Learning for RGB-Infrared Person Re-Identification

322   0   0.0 ( 0 )
 Added by Can Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

RGB-Infrared person re-identification (RGB-IR Re-ID) aims to match persons from heterogeneous images captured by visible and thermal cameras, which is of great significance in the surveillance system under poor light conditions. Facing great challenges in complex variances including conventional single-modality and additional inter-modality discrepancies, most of the existing RGB-IR Re-ID methods propose to impose constraints in image level, feature level or a hybrid of both. Despite the better performance of hybrid constraints, they are usually implemented with heavy network architecture. As a matter of fact, previous efforts contribute more as pioneering works in new cross-modal Re-ID area while leaving large space for improvement. This can be mainly attributed to: (1) lack of abundant person image pairs from different modalities for training, and (2) scarcity of salient modality-invariant features especially on coarse representations for effective matching. To address these issues, a novel Multi-Scale Part-Aware Cascading framework (MSPAC) is formulated by aggregating multi-scale fine-grained features from part to global in a cascading manner, which results in a unified representation containing rich and enhanced semantic features. Furthermore, a marginal exponential centre (MeCen) loss is introduced to jointly eliminate mixed variances from intra- and inter-modal examples. Cross-modality correlations can thus be efficiently explored on salient features for distinctive modality-invariant feature learning. Extensive experiments are conducted to demonstrate that the proposed method outperforms all the state-of-the-art by a large margin.

rate research

Read More

RGB-Infrared (IR) person re-identification aims to retrieve person-of-interest from heterogeneous cameras, easily suffering from large image modality discrepancy caused by different sensing wavelength ranges. Existing work usually minimizes such discrepancy by aligning domain distribution of global features, while neglecting the intra-modality structural relations between semantic parts. This could result in the network overly focusing on local cues, without considering long-range body part dependencies, leading to meaningless region representations. In this paper, we propose a graph-enabled distribution matching solution, dubbed Geometry-Guided Dual-Alignment (G2DA) learning, for RGB-IR ReID. It can jointly encourage the cross-modal consistency between part semantics and structural relations for fine-grained modality alignment by solving a graph matching task within a multi-scale skeleton graph that embeds human topology information. Specifically, we propose to build a semantic-aligned complete graph into which all cross-modality images can be mapped via a pose-adaptive graph construction mechanism. This graph represents extracted whole-part features by nodes and expresses the node-wise similarities with associated edges. To achieve the graph-based dual-alignment learning, an Optimal Transport (OT) based structured metric is further introduced to simultaneously measure point-wise relations and group-wise structural similarities across modalities. By minimizing the cost of an inter-modality transport plan, G2DA can learn a consistent and discriminative feature subspace for cross-modality image retrieval. Furthermore, we advance a Message Fusion Attention (MFA) mechanism to adaptively reweight the information flow of semantic propagation, effectively strengthening the discriminability of extracted semantic features.
Person Re-identification (re-id) aims to match people across non-overlapping camera views in a public space. It is a challenging problem because many people captured in surveillance videos wear similar clothes. Consequently, the differences in their appearance are often subtle and only detectable at the right location and scales. Existing re-id models, particularly the recently proposed deep learning based ones match people at a single scale. In contrast, in this paper, a novel multi-scale deep learning model is proposed. Our model is able to learn deep discriminative feature representations at different scales and automatically determine the most suitable scales for matching. The importance of different spatial locations for extracting discriminative features is also learned explicitly. Experiments are carried out to demonstrate that the proposed model outperforms the state-of-the art on a number of benchmarks
The performance of person re-identification (Re-ID) has been seriously effected by the large cross-view appearance variations caused by mutual occlusions and background clutters. Hence learning a feature representation that can adaptively emphasize the foreground persons becomes very critical to solve the person Re-ID problem. In this paper, we propose a simple yet effective foreground attentive neural network (FANN) to learn a discriminative feature representation for person Re-ID, which can adaptively enhance the positive side of foreground and weaken the negative side of background. Specifically, a novel foreground attentive subnetwork is designed to drive the networks attention, in which a decoder network is used to reconstruct the binary mask by using a novel local regression loss function, and an encoder network is regularized by the decoder network to focus its attention on the foreground persons. The resulting feature maps of encoder network are further fed into the body part subnetwork and feature fusion subnetwork to learn discriminative features. Besides, a novel symmetric triplet loss function is introduced to supervise feature learning, in which the intra-class distance is minimized and the inter-class distance is maximized in each triplet unit, simultaneously. Training our FANN in a multi-task learning framework, a discriminative feature representation can be learned to find out the matched reference to each probe among various candidates in the gallery. Extensive experimental results on several public benchmark datasets are evaluated, which have shown clear improvements of our method over the state-of-the-art approaches.
84 - Haojie Liu , Shun Ma , Daoxun Xia 2021
Visible-Infrared person re-identification (VI-ReID) is a challenging matching problem due to large modality varitions between visible and infrared images. Existing approaches usually bridge the modality gap with only feature-level constraints, ignoring pixel-level variations. Some methods employ GAN to generate style-consistent images, but it destroys the structure information and incurs a considerable level of noise. In this paper, we explicitly consider these challenges and formulate a novel spectrum-aware feature augementation network named SFANet for cross-modality matching problem. Specifically, we put forward to employ grayscale-spectrum images to fully replace RGB images for feature learning. Learning with the grayscale-spectrum images, our model can apparently reduce modality discrepancy and detect inner structure relations across the different modalities, making it robust to color variations. In feature-level, we improve the conventional two-stream network through balancing the number of specific and sharable convolutional blocks, which preserve the spatial structure information of features. Additionally, a bi-directional tri-constrained top-push ranking loss (BTTR) is embedded in the proposed network to improve the discriminability, which efficiently further boosts the matching accuracy. Meanwhile, we further introduce an effective dual-linear with batch normalization ID embedding method to model the identity-specific information and assits BTTR loss in magnitude stabilizing. On SYSU-MM01 and RegDB datasets, we conducted extensively experiments to demonstrate that our proposed framework contributes indispensably and achieves a very competitive VI-ReID performance.
RGB-Infrared (IR) person re-identification is very challenging due to the large cross-modality variations between RGB and IR images. The key solution is to learn aligned features to the bridge RGB and IR modalities. However, due to the lack of correspondence labels between every pair of RGB and IR images, most methods try to alleviate the variations with set-level alignment by reducing the distance between the entire RGB and IR sets. However, this set-level alignment may lead to misalignment of some instances, which limits the performance for RGB-IR Re-ID. Different from existing methods, in this paper, we propose to generate cross-modality paired-images and perform both global set-level and fine-grained instance-level alignments. Our proposed method enjoys several merits. First, our method can perform set-level alignment by disentangling modality-specific and modality-invariant features. Compared with conventional methods, ours can explicitly remove the modality-specific features and the modality variation can be better reduced. Second, given cross-modality unpaired-images of a person, our method can generate cross-modality paired images from exchanged images. With them, we can directly perform instance-level alignment by minimizing distances of every pair of images. Extensive experimental results on two standard benchmarks demonstrate that the proposed model favourably against state-of-the-art methods. Especially, on SYSU-MM01 dataset, our model can achieve a gain of 9.2% and 7.7% in terms of Rank-1 and mAP. Code is available at https://github.com/wangguanan/JSIA-ReID.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا