Do you want to publish a course? Click here

Faster Policy Learning with Continuous-Time Gradients

108   0   0.0 ( 0 )
 Added by Samuel Ainsworth
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study the estimation of policy gradients for continuous-time systems with known dynamics. By reframing policy learning in continuous-time, we show that it is possible construct a more efficient and accurate gradient estimator. The standard back-propagation through time estimator (BPTT) computes exact gradients for a crude discretization of the continuous-time system. In contrast, we approximate continuous-time gradients in the original system. With the explicit goal of estimating continuous-time gradients, we are able to discretize adaptively and construct a more efficient policy gradient estimator which we call the Continuous-Time Policy Gradient (CTPG). We show that replacing BPTT policy gradients with more efficient CTPG estimates results in faster and more robust learning in a variety of control tasks and simulators.



rate research

Read More

We study a reinforcement learning setting, where the state transition function is a convex combination of a stochastic continuous function and a deterministic function. Such a setting generalizes the widely-studied stochastic state transition setting, namely the setting of deterministic policy gradient (DPG). We firstly give a simple example to illustrate that the deterministic policy gradient may be infinite under deterministic state transitions, and introduce a theoretical technique to prove the existence of the policy gradient in this generalized setting. Using this technique, we prove that the deterministic policy gradient indeed exists for a certain set of discount factors, and further prove two conditions that guarantee the existence for all discount factors. We then derive a closed form of the policy gradient whenever exists. Furthermore, to overcome the challenge of high sample complexity of DPG in this setting, we propose the Generalized Deterministic Policy Gradient (GDPG) algorithm. The main innovation of the algorithm is a new method of applying model-based techniques to the model-free algorithm, the deep deterministic policy gradient algorithm (DDPG). GDPG optimize the long-term rewards of the model-based augmented MDP subject to a constraint that the long-rewards of the MDP is less than the original one. We finally conduct extensive experiments comparing GDPG with state-of-the-art methods and the direct model-based extension method of DDPG on several standard continuous control benchmarks. Results demonstrate that GDPG substantially outperforms DDPG, the model-based extension of DDPG and other baselines in terms of both convergence and long-term rewards in most environments.
Reinforcement learning algorithms such as the deep deterministic policy gradient algorithm (DDPG) has been widely used in continuous control tasks. However, the model-free DDPG algorithm suffers from high sample complexity. In this paper we consider the deterministic value gradients to improve the sample efficiency of deep reinforcement learning algorithms. Previous works consider deterministic value gradients with the finite horizon, but it is too myopic compared with infinite horizon. We firstly give a theoretical guarantee of the existence of the value gradients in this infinite setting. Based on this theoretical guarantee, we propose a class of the deterministic value gradient algorithm (DVG) with infinite horizon, and different rollout steps of the analytical gradients by the learned model trade off between the variance of the value gradients and the model bias. Furthermore, to better combine the model-based deterministic value gradient estimators with the model-free deterministic policy gradient estimator, we propose the deterministic value-policy gradient (DVPG) algorithm. We finally conduct extensive experiments comparing DVPG with state-of-the-art methods on several standard continuous control benchmarks. Results demonstrate that DVPG substantially outperforms other baselines.
We observe that several existing policy gradient methods (such as vanilla policy gradient, PPO, A2C) may suffer from overly large gradients when the current policy is close to deterministic (even in some very simple environments), leading to an unstable training process. To address this issue, we propose a new method, called emph{target distribution learning} (TDL), for policy improvement in reinforcement learning. TDL alternates between proposing a target distribution and training the policy network to approach the target distribution. TDL is more effective in constraining the KL divergence between updated policies, and hence leads to more stable policy improvements over iterations. Our experiments show that TDL algorithms perform comparably to (or better than) state-of-the-art algorithms for most continuous control tasks in the MuJoCo environment while being more stable in training.
This paper prescribes a suite of techniques for off-policy Reinforcement Learning (RL) that simplify the training process and reduce the sample complexity. First, we show that simple Deterministic Policy Gradient works remarkably well as long as the overestimation bias is controlled. This is contrast to existing literature which creates sophisticated off-policy techniques. Second, we pinpoint training instabilities, typical of off-policy algorithms, to the greedy policy update step; existing solutions such as delayed policy updates do not mitigate this issue. Third, we show that ideas in the propensity estimation literature can be used to importance-sample transitions from the replay buffer and selectively update the policy to prevent deterioration of performance. We make these claims using extensive experimentation on a set of challenging MuJoCo tasks. A short video of our results can be seen at https://tinyurl.com/scs6p5m .
Learning continuous-time stochastic dynamics is a fundamental and essential problem in modeling sporadic time series, whose observations are irregular and sparse in both time and dimension. For a given system whose latent states and observed data are high-dimensional, it is generally impossible to derive a precise continuous-time stochastic process to describe the system behaviors. To solve the above problem, we apply Variational Bayesian method and propose a flexible continuous-time stochastic recurrent neural network named Variational Stochastic Differential Networks (VSDN), which embeds the complicated dynamics of the sporadic time series by neural Stochastic Differential Equations (SDE). VSDNs capture the stochastic dependency among latent states and observations by deep neural networks. We also incorporate two differential Evidence Lower Bounds to efficiently train the models. Through comprehensive experiments, we show that VSDNs outperform state-of-the-art continuous-time deep learning models and achieve remarkable performance on prediction and interpolation tasks for sporadic time series.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا