Do you want to publish a course? Click here

DDPG++: Striving for Simplicity in Continuous-control Off-Policy Reinforcement Learning

142   0   0.0 ( 0 )
 Added by Rasool Fakoor
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper prescribes a suite of techniques for off-policy Reinforcement Learning (RL) that simplify the training process and reduce the sample complexity. First, we show that simple Deterministic Policy Gradient works remarkably well as long as the overestimation bias is controlled. This is contrast to existing literature which creates sophisticated off-policy techniques. Second, we pinpoint training instabilities, typical of off-policy algorithms, to the greedy policy update step; existing solutions such as delayed policy updates do not mitigate this issue. Third, we show that ideas in the propensity estimation literature can be used to importance-sample transitions from the replay buffer and selectively update the policy to prevent deterioration of performance. We make these claims using extensive experimentation on a set of challenging MuJoCo tasks. A short video of our results can be seen at https://tinyurl.com/scs6p5m .



rate research

Read More

81 - Che Wang , Yanqiu Wu , Quan Vuong 2019
We aim to develop off-policy DRL algorithms that not only exceed state-of-the-art performance but are also simple and minimalistic. For standard continuous control benchmarks, Soft Actor-Critic (SAC), which employs entropy maximization, currently provides state-of-the-art performance. We first demonstrate that the entropy term in SAC addresses action saturation due to the bounded nature of the action spaces, with this insight, we propose a streamlined algorithm with a simple normalization scheme or with inverted gradients. We show that both approaches can match SACs sample efficiency performance without the need of entropy maximization, we then propose a simple non-uniform sampling method for selecting transitions from the replay buffer during training. Extensive experimental results demonstrate that our proposed sampling scheme leads to state of the art sample efficiency on challenging continuous control tasks. We combine all of our findings into one simple algorithm, which we call Streamlined Off Policy with Emphasizing Recent Experience, for which we provide robust public-domain code.
We observe that several existing policy gradient methods (such as vanilla policy gradient, PPO, A2C) may suffer from overly large gradients when the current policy is close to deterministic (even in some very simple environments), leading to an unstable training process. To address this issue, we propose a new method, called emph{target distribution learning} (TDL), for policy improvement in reinforcement learning. TDL alternates between proposing a target distribution and training the policy network to approach the target distribution. TDL is more effective in constraining the KL divergence between updated policies, and hence leads to more stable policy improvements over iterations. Our experiments show that TDL algorithms perform comparably to (or better than) state-of-the-art algorithms for most continuous control tasks in the MuJoCo environment while being more stable in training.
Off-policy evaluation in reinforcement learning offers the chance of using observational data to improve future outcomes in domains such as healthcare and education, but safe deployment in high stakes settings requires ways of assessing its validity. Traditional measures such as confidence intervals may be insufficient due to noise, limited data and confounding. In this paper we develop a method that could serve as a hybrid human-AI system, to enable human experts to analyze the validity of policy evaluation estimates. This is accomplished by highlighting observations in the data whose removal will have a large effect on the OPE estimate, and formulating a set of rules for choosing which ones to present to domain experts for validation. We develop methods to compute exactly the influence functions for fitted Q-evaluation with two different function classes: kernel-based and linear least squares, as well as importance sampling methods. Experiments on medical simulations and real-world intensive care unit data demonstrate that our method can be used to identify limitations in the evaluation process and make evaluation more robust.
This paper extends off-policy reinforcement learning to the multi-agent case in which a set of networked agents communicating with their neighbors according to a time-varying graph collaboratively evaluates and improves a target policy while following a distinct behavior policy. To this end, the paper develops a multi-agent version of emphatic temporal difference learning for off-policy policy evaluation, and proves convergence under linear function approximation. The paper then leverages this result, in conjunction with a novel multi-agent off-policy policy gradient theorem and recent work in both multi-agent on-policy and single-agent off-policy actor-critic methods, to develop and give convergence guarantees for a new multi-agent off-policy actor-critic algorithm.
In this paper, we aim to develop a simple and scalable reinforcement learning algorithm that uses standard supervised learning methods as subroutines. Our goal is an algorithm that utilizes only simple and convergent maximum likelihood loss functions, while also being able to leverage off-policy data. Our proposed approach, which we refer to as advantage-weighted regression (AWR), consists of two standard supervised learning steps: one to regress onto target values for a value function, and another to regress onto weighted target actions for the policy. The method is simple and general, can accommodate continuous and discrete actions, and can be implemented in just a few lines of code on top of standard supervised learning methods. We provide a theoretical motivation for AWR and analyze its properties when incorporating off-policy data from experience replay. We evaluate AWR on a suite of standard OpenAI Gym benchmark tasks, and show that it achieves competitive performance compared to a number of well-established state-of-the-art RL algorithms. AWR is also able to acquire more effective policies than most off-policy algorithms when learning from purely static datasets with no additional environmental interactions. Furthermore, we demonstrate our algorithm on challenging continuous control tasks with highly complex simulated characters.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا