Do you want to publish a course? Click here

Kinetic Modeling of Magnetospheres

207   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper presents the state of the art of kinetic modeling techniques for simulating plasma kinetic dynamics in magnetospheres. We describe the critical numerical techniques for enabling large-scale kinetic simulations of magnetospheres: parameter scaling, implicit Particle-in-Cell schemes, and fluid-kinetic coupling. We show an application of these techniques to study particle acceleration and heating in asymmetric magnetic reconnection in the Ganymede magnetosphere.



rate research

Read More

This review summarizes the research of Mercurys magnetosphere in the Post-MESSENGER era and compares its dynamics to those in other planetary magnetospheres, especially to those in Earths magnetosphere. This review starts by introducing the planet Mercury, including its interplanetary environment, magnetosphere, exosphere, and conducting core. The frequent and intense magnetic reconnection on the dayside magnetopause, which is represented by the flux transfer event shower, is reviewed on how they depend on magnetosheath plasma beta and magnetic shear angle across the magnetopause, following by how they contribute to the flux circulation and magnetosphere-surface-exosphere coupling. In the next, the progress of Mercurys magnetosphere under extreme solar events, including the core induction and the reconnection erosion on the dayside magnetosphere, the responses of the nightside magnetosphere, are reviewed. Then, the dawn-dusk properties of the plasma sheet, including the features of the ions, the structure of the current sheet, and the dynamics of magnetic reconnection, are summarized. The last topic reviews the particle energization in Mercurys magnetosphere, which includes the energization of the Kelvin-Helmholtz waves on the magnetopause boundaries, reconnection-generated magnetic structures, and the cross-tail electric field. In each chapter, the last section discusses the open questions related with each topic, which can be considered by the simulations and the future spacecraft mission. We close by summarizing the future BepiColombo opportunities, which is a joint mission between ESA and JAXA, and is en route to Mercury.
106 - J.-L. Vay , A. Huebl , R. Lehe 2021
Computer modeling is essential to research on Advanced Accelerator Concepts (AAC), as well as to their design and operation. This paper summarizes the current status and future needs of AAC systems and reports on several key aspects of (i) high-performance computing (including performance, portability, scalability, advanced algorithms, scalable I/Os and In-Situ analysis), (ii) the benefits of ecosystems with integrated workflows based on standardized input and output and with integrated frameworks developed as a community, and (iii) sustainability and reliability (including code robustness and usability).
We study spectral features of ion velocity and magnetic field correlations in the solar wind and in the magnetosheath using data from the Magnetospheric Multi-Scale (MMS) spacecraft. High resolution MMS observations enable the study of transition of these correlations between their magnetofluid character at larger scales into the sub-proton kinetic range, previously unstudied in spacecraft data. Cross-helicity, angular alignment and energy partitioning is examined over a suit- able range of scales, employing measurements based on the Taylor frozen-in approximation as well as direct two-spacecraft correlation measurements. The results demonstrate signatures of alignment at large scales. As kinetic scales are approached, the alignment between v and b is destroyed by demagnetization of protons.
Studies of shocks have long suggested that a shock can undergo cyclically self-reformation in a time scale of ion cyclotron period. This process has been proposed as a primary mechanism for energy dissipation and energetic particle acceleration at shocks. Unambiguous observational evidence, however, has remained elusive. Here, we report direct observations for the self-reformation process of a collisionless, high Mach number, quasi-perpendicular shock using MMS measurements. We find that reflected ions by the old shock ramp form a clear phase-space vortex, which gives rise to a new ramp. The new ramp observed by MMS2 has not yet developed to a mature stage during the self-reformation, and is not strong enough to reflect incident ions. Consequently, these ions are only slightly slowed down and show a flat velocity profile from the new ramp all the way to the old one. The present results provide direct evidence for shock self-reformation, and also shed light on energy dissipation and energetic particle acceleration at collisionless shocks throughout the universe.
303 - Honghong Wu 2018
Kinetic Alfv{e}n waves (KAWs) are the short-wavelength extension of the MHD Alfv{e}n-wave branch in the case of highly-oblique propagation with respect to the background magnetic field. Observations of space plasma show that small-scale turbulence is mainly KAW-like. We apply two theoretical approaches, collisional two-fluid theory and collisionless kinetic theory, to obtain predictions for the KAW polarizations depending on $beta_mathrm{p}$ (the ratio of the proton thermal pressure to the magnetic pressure) at the ion gyroscale in terms of fluctuations in density, bulk velocity, and pressure. We perform a wavelet analysis of MMS magnetosheath measurements and compare the observations with both theories. We find that the two-fluid theory predicts the observations better than kinetic theory, suggesting that the small-scale KAW-like fluctuations exhibit a fluid-like behavior in the magnetosheath although the plasma is weakly collisional. We also present predictions for the KAW polarizations in the inner heliosphere that are testable with Parker Solar Probe and Solar Orbiter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا