Do you want to publish a course? Click here

Correlated Charge Noise and Relaxation Errors in Superconducting Qubits

360   0   0.0 ( 0 )
 Added by Chris Wilen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The central challenge in building a quantum computer is error correction. Unlike classical bits, which are susceptible to only one type of error, quantum bits (qubits) are susceptible to two types of error, corresponding to flips of the qubit state about the $X$- and $Z$-directions. While the Heisenberg Uncertainty Principle precludes simultaneous monitoring of $X$- and $Z$-flips on a single qubit, it is possible to encode quantum information in large arrays of entangled qubits that enable accurate monitoring of all errors in the system, provided the error rate is low. Another crucial requirement is that errors cannot be correlated. Here, we characterize a superconducting multiqubit circuit and find that charge fluctuations are highly correlated on a length scale over 600~$mu$m; moreover, discrete charge jumps are accompanied by a strong transient suppression of qubit energy relaxation time across the millimeter-scale chip. The resulting correlated errors are explained in terms of the charging event and phonon-mediated quasiparticle poisoning associated with absorption of gamma rays and cosmic-ray muons in the qubit substrate. Robust quantum error correction will require the development of mitigation strategies to protect multiqubit arrays from correlated errors due to particle impacts.



rate research

Read More

We have used Ramsey tomography to characterize charge noise in a weakly charge-sensitive superconducting qubit. We find a charge noise that scales with frequency as $1/f^alpha$ over 5 decades with $alpha = 1.93$ and a magnitude $S_q(text{1Hz})= 2.9times10^{-4}~e^2/text{Hz}$. The noise exponent and magnitude of the low-frequency noise are much larger than those seen in prior work on single electron transistors, yet are consistent with reports of frequency noise in other superconducting qubits. Moreover, we observe frequent large-amplitude jumps in offset charge exceeding 0.1$e$; these large discrete charge jumps are incompatible with a picture of localized dipole-like two-level fluctuators. The data reveal an unexpected dependence of charge noise on device scale and suggest models involving either charge drift or fluctuating patch potentials.
Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation. In this work, we investigate a complementary, stochastic approach to reducing errors: instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. In the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. We report a 70% reduction in the quasiparticle density, resulting in a threefold enhancement in qubit relaxation times, and a comparable reduction in coherence variability.
We consider coupled quantum two-state systems (qubits) exposed to a global relaxation process. The global relaxation refers to the assumption that qubits are coupled to the same quantum bath with approximately equal strengths, appropriate for long-wavelength environmental fluctuations. We show that interactions do not spoil the picture of Dickes subradiant and superradiant states where quantum interference effects lead to striking deviations from the independent relaxation picture. Remarkably, the system possess a stable entangled state and a state decaying faster than single qubit excitations. We propose a scheme how these effects can be experimentally accessed in superconducting flux qubits and, possibly, used in constructing long-lived entangled states.
We present an experimental realization of the transmon qubit, an improved superconducting charge qubit derived from the Cooper pair box. We experimentally verify the predicted exponential suppression of sensitivity to 1/f charge noise [J. Koch et al., Phys. Rev. A 76, 042319 (2007)]. This removes the leading source of dephasing in charge qubits, resulting in homogenously broadened transitions with relaxation and dephasing times in the microsecond range. Our systematic characterization of the qubit spectrum, anharmonicity, and charge dispersion shows excellent agreement with theory, rendering the transmon a promising qubit for future steps towards solid-state quantum information processing.
We demonstrate improved operation of exchange-coupled semiconductor quantum dots by substantially reducing the sensitivity of exchange operations to charge noise. The method involves biasing a double-dot symmetrically between the charge-state anti-crossings, where the derivative of the exchange energy with respect to gate voltages is minimized. Exchange remains highly tunable by adjusting the tunnel coupling. We find that this method reduces the dephasing effect of charge noise by more than a factor of five in comparison to operation near a charge-state anti-crossing, increasing the number of observable exchange oscillations in our qubit by a similar factor. Performance also improves with exchange rate, favoring fast quantum operations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا