No Arabic abstract
Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation. In this work, we investigate a complementary, stochastic approach to reducing errors: instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. In the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. We report a 70% reduction in the quasiparticle density, resulting in a threefold enhancement in qubit relaxation times, and a comparable reduction in coherence variability.
A critical ingredient for realizing large-scale quantum information processors will be the ability to make economical use of qubit control hardware. We demonstrate an extensible strategy for reusing control hardware on same-frequency transmon qubits in a circuit QED chip with surface-code-compatible connectivity. A vector switch matrix enables selective broadcasting of input pulses to multiple transmons with individual tailoring of pulse quadratures for each, as required to minimize the effects of leakage on weakly anharmonic qubits. Using randomized benchmarking, we compare multiple broadcasting strategies that each pass the surface-code error threshold for single-qubit gates. In particular, we introduce a selective-broadcasting control strategy using five pulse primitives, which allows independent, simultaneous Clifford gates on arbitrary numbers of qubits.
We show how the dynamical modulation of the qubit-field coupling strength in a circuit quantum electrodynamics architecture mimics the motion of the qubit at relativistic speeds. This allows us to propose a realistic experiment to detect microwave photons coming from simulated acceleration radiation. Moreover, by combining this technique with the dynamical Casimir physics, we enhance the toolbox for studying relativistic phenomena in quantum field theory with superconducting circuits.
Quantum annealing (QA) is a heuristic algorithm for finding low-energy configurations of a system, with applications in optimization, machine learning, and quantum simulation. Up to now, all implementations of QA have been limited to qubits coupled via a single degree of freedom. This gives rise to a stoquastic Hamiltonian that has no sign problem in quantum Monte Carlo (QMC) simulations. In this paper, we report implementation and measurements of two superconducting flux qubits coupled via two canonically conjugate degrees of freedom (charge and flux) to achieve a nonstoquastic Hamiltonian. Such coupling can enhance performance of QA processors, extend the range of quantum simulations. We perform microwave spectroscopy to extract circuit parameters and show that the charge coupling manifests itself as a YY interaction in the computational basis. We observe destructive interference in quantum coherent oscillations between the computational basis states of the two-qubit system. Finally, we show that the extracted Hamiltonian is nonstoquastic over a wide range of parameters.
A quantum computer will use the properties of quantum physics to solve certain computational problems much faster than otherwise possible. One promising potential implementation is to use superconducting quantum bits in the circuit quantum electrodynamics (cQED) architecture. There, the low energy states of a nonlinear electronic oscillator are isolated and addressed as a qubit. These qubits are capacitively coupled to the modes of a microwave-frequency transmission line resonator which serves as a quantum communication bus. Microwave electrical pulses are applied to the resonator to manipulate or measure the qubit state. State control is calibrated using diagnostic sequences that expose systematic errors. Hybridization of the resonator with the qubit gives it a nonlinear response when driven strongly, useful for amplifying the measurement signal to enhance accuracy. Qubits coupled to the same bus may coherently interact with one another via the exchange of virtual photons. A two-qubit conditional phase gate mediated by this interaction can deterministically entangle its targets, and is used to generate two-qubit Bell states and three-qubit GHZ states. These three-qubit states are of particular interest because they redundantly encode quantum information. They are the basis of the quantum repetition code prototypical of more sophisticated schemes required for quantum computation. Using a three-qubit Toffoli gate, this code is demonstrated to autonomously correct either bit- or phase-flip errors. Despite observing the expected behavior, the overall fidelity is low because of decoherence. A superior implementation of cQED replaces the transmission-line resonator with a three-dimensional box mode, increasing lifetimes by an order of magnitude. In-situ qubit frequency control is enabled with control lines, which are used to fully characterize and control the system Hamiltonian.
We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation.