No Arabic abstract
The coordinate descent (CD) method has recently become popular for solving very large-scale problems, partly due to its simple update, low memory requirement, and fast convergence. In this paper, we explore the greedy CD on solving non-negative quadratic programming (NQP). The greedy CD generally has much more expensive per-update complexity than its cyclic and randomized counterparts. However, on the NQP, these three CDs have almost the same per-update cost, while the greedy CD can have significantly faster overall convergence speed. We also apply the proposed greedy CD as a subroutine to solve linearly constrained NQP and the non-negative matrix factorization. Promising numerical results on both problems are observed on instances with synthetic data and also image data.
We study ways to accelerate greedy coordinate descent in theory and in practice, where accelerate refers either to $O(1/k^2)$ convergence in theory, in practice, or both. We introduce and study two algorithms: Accelerated Semi-Greedy Coordinate Descent (ASCD) and Accelerated Greedy Coordinate Descent (AGCD). While ASCD takes greedy steps in the $x$-updates and randomized steps in the $z$-updates, AGCD is a straightforward extension of standard greedy coordinate descent that only takes greedy steps. On the theory side, our main results are for ASCD: we show that ASCD achieves $O(1/k^2)$ convergence, and it also achieves accelerated linear convergence for strongly convex functions. On the empirical side, we observe that both AGCD and ASCD outperform Accelerated Randomized Coordinate Descent on a variety of instances. In particular, we note that AGCD significantly outperforms the other accelerated coordinate descent methods in numerical tests, in spite of a lack of theoretical guarantees for this method. To complement the empirical study of AGCD, we present a Lyapunov energy function argument that points to an explanation for why a direct extension of the acceleration proof for AGCD does not work; and we also introduce a technical condition under which AGCD is guaranteed to have accelerated convergence. Last of all, we confirm that this technical condition holds in our empirical study.
We present a novel randomized block coordinate descent method for the minimization of a convex composite objective function. The method uses (approximate) partial second-order (curvature) information, so that the algorithm performance is more robust when applied to highly nonseparable or ill conditioned problems. We call the method Flexible Coordinate Descent (FCD). At each iteration of FCD, a block of coordinates is sampled randomly, a quadratic model is formed about that block and the model is minimized emph{approximately/inexactly} to determine the search direction. An inexpensive line search is then employed to ensure a monotonic decrease in the objective function and acceptance of large step sizes. We present several high probability iteration complexity results to show that convergence of FCD is guaranteed theoretically. Finally, we present numerical results on large-scale problems to demonstrate the practical performance of the method.
In this work, we analyze the global convergence property of coordinate gradient descent with random choice of coordinates and stepsizes for non-convex optimization problems. Under generic assumptions, we prove that the algorithm iterate will almost surely escape strict saddle points of the objective function. As a result, the algorithm is guaranteed to converge to local minima if all saddle points are strict. Our proof is based on viewing coordinate descent algorithm as a nonlinear random dynamical system and a quantitative finite block analysis of its linearization around saddle points.
The method of block coordinate gradient descent (BCD) has been a powerful method for large-scale optimization. This paper considers the BCD method that successively updates a series of blocks selected according to a Markov chain. This kind of block selection is neither i.i.d. random nor cyclic. On the other hand, it is a natural choice for some applications in distributed optimization and Markov decision process, where i.i.d. random and cyclic selections are either infeasible or very expensive. By applying mixing-time properties of a Markov chain, we prove convergence of Markov chain BCD for minimizing Lipschitz differentiable functions, which can be nonconvex. When the functions are convex and strongly convex, we establish both sublinear and linear convergence rates, respectively. We also present a method of Markov chain inertial BCD. Finally, we discuss potential applications.
Difference-of-Convex (DC) minimization, referring to the problem of minimizing the difference of two convex functions, has been found rich applications in statistical learning and studied extensively for decades. However, existing methods are primarily based on multi-stage convex relaxation, only leading to weak optimality of critical points. This paper proposes a coordinate descent method for minimizing DC functions based on sequential nonconvex approximation. Our approach iteratively solves a nonconvex one-dimensional subproblem globally, and it is guaranteed to converge to a coordinate-wise stationary point. We prove that this new optimality condition is always stronger than the critical point condition and the directional point condition when the objective function is weakly convex. For comparisons, we also include a naive variant of coordinate descent methods based on sequential convex approximation in our study. When the objective function satisfies an additional regularity condition called emph{sharpness}, coordinate descent methods with an appropriate initialization converge emph{linearly} to the optimal solution set. Also, for many applications of interest, we show that the nonconvex one-dimensional subproblem can be computed exactly and efficiently using a breakpoint searching method. We present some discussions and extensions of our proposed method. Finally, we have conducted extensive experiments on several statistical learning tasks to show the superiority of our approach. Keywords: Coordinate Descent, DC Minimization, DC Programming, Difference-of-Convex Programs, Nonconvex Optimization, Sparse Optimization, Binary Optimization.