No Arabic abstract
In this work, we analyze the global convergence property of coordinate gradient descent with random choice of coordinates and stepsizes for non-convex optimization problems. Under generic assumptions, we prove that the algorithm iterate will almost surely escape strict saddle points of the objective function. As a result, the algorithm is guaranteed to converge to local minima if all saddle points are strict. Our proof is based on viewing coordinate descent algorithm as a nonlinear random dynamical system and a quantitative finite block analysis of its linearization around saddle points.
In this paper we propose several adaptive gradient methods for stochastic optimization. Unlike AdaGrad-type of methods, our algorithms are based on Armijo-type line search and they simultaneously adapt to the unknown Lipschitz constant of the gradient and variance of the stochastic approximation for the gradient. We consider an accelerated and non-accelerated gradient descent for convex problems and gradient descent for non-convex problems. In the experiments we demonstrate superiority of our methods to existing adaptive methods, e.g. AdaGrad and Adam.
We study decentralized non-convex finite-sum minimization problems described over a network of nodes, where each node possesses a local batch of data samples. In this context, we analyze a single-timescale randomized incremental gradient method, called GT-SAGA. GT-SAGA is computationally efficient as it evaluates one component gradient per node per iteration and achieves provably fast and robust performance by leveraging node-level variance reduction and network-level gradient tracking. For general smooth non-convex problems, we show the almost sure and mean-squared convergence of GT-SAGA to a first-order stationary point and further describe regimes of practical significance where it outperforms the existing approaches and achieves a network topology-independent iteration complexity respectively. When the global function satisfies the Polyak-Lojaciewisz condition, we show that GT-SAGA exhibits linear convergence to an optimal solution in expectation and describe regimes of practical interest where the performance is network topology-independent and improves upon the existing methods. Numerical experiments are included to highlight the main convergence aspects of GT-SAGA in non-convex settings.
Block coordinate descent (BCD), also known as nonlinear Gauss-Seidel, is a simple iterative algorithm for nonconvex optimization that sequentially minimizes the objective function in each block coordinate while the other coordinates are held fixed. We propose a version of BCD that is guaranteed to converge to the stationary points of block-wise convex and differentiable objective functions under constraints. Furthermore, we obtain a best-case rate of convergence of order $log n/sqrt{n}$, where $n$ denotes the number of iterations. A key idea is to restrict the parameter search within a diminishing radius to promote stability of iterates, and then to show that such auxiliary constraints vanish in the limit. As an application, we provide a modified alternating least squares algorithm for nonnegative CP tensor factorization that converges to the stationary points of the reconstruction error with the same bound on the best-case rate of convergence. We also experimentally validate our results with both synthetic and real-world data.
This paper considers the analysis of continuous time gradient-based optimization algorithms through the lens of nonlinear contraction theory. It demonstrates that in the case of a time-invariant objective, most elementary results on gradient descent based on convexity can be replaced by much more general results based on contraction. In particular, gradient descent converges to a unique equilibrium if its dynamics are contracting in any metric, with convexity of the cost corresponding to the special case of contraction in the identity metric. More broadly, contraction analysis provides new insights for the case of geodesically-convex optimization, wherein non-convex problems in Euclidean space can be transformed to convex ones posed over a Riemannian manifold. In this case, natural gradient descent converges to a unique equilibrium if it is contracting in any metric, with geodesic convexity of the cost corresponding to contraction in the natural metric. New results using semi-contraction provide additional insights into the topology of the set of optimizers in the case when multiple optima exist. Furthermore, they show how semi-contraction may be combined with specific additional information to reach broad conclusions about a dynamical system. The contraction perspective also easily extends to time-varying optimization settings and allows one to recursively build large optimization structures out of simpler elements. Extensions to natural primal-dual optimization and game-theoretic contexts further illustrate the potential reach of these new perspectives.
We study the asymmetric low-rank factorization problem: [min_{mathbf{U} in mathbb{R}^{m times d}, mathbf{V} in mathbb{R}^{n times d}} frac{1}{2}|mathbf{U}mathbf{V}^top -mathbf{Sigma}|_F^2] where $mathbf{Sigma}$ is a given matrix of size $m times n$ and rank $d$. This is a canonical problem that admits two difficulties in optimization: 1) non-convexity and 2) non-smoothness (due to unbalancedness of $mathbf{U}$ and $mathbf{V}$). This is also a prototype for more complex problems such as asymmetric matrix sensing and matrix completion. Despite being non-convex and non-smooth, it has been observed empirically that the randomly initialized gradient descent algorithm can solve this problem in polynomial time. Existing theories to explain this phenomenon all require artificial modifications of the algorithm, such as adding noise in each iteration and adding a balancing regularizer to balance the $mathbf{U}$ and $mathbf{V}$. This paper presents the first proof that shows randomly initialized gradient descent converges to a global minimum of the asymmetric low-rank factorization problem with a polynomial rate. For the proof, we develop 1) a new symmetrization technique to capture the magnitudes of the symmetry and asymmetry, and 2) a quantitative perturbation analysis to approximate matrix derivatives. We believe both are useful for other related non-convex problems.