Do you want to publish a course? Click here

Absence of a Dirac gap in ferromagnetic Cr$_x$(Bi$_{0.1}$Sb$_{0.9}$)$_{2-x}$Te$_3$

77   0   0.0 ( 0 )
 Added by Tonica Valla
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetism breaks the time reversal symmetry expected to open a Dirac gap in 3D topological insulators that consequently leads to quantum anomalous Hall effect. The most common approach of inducing ferromagnetic state is by doping magnetic 3$d$ elements into bulk of 3D topological insulators. In Cr$_{0.15}$(Bi$_{0.1}$Sb$_{0.9}$)$_{1.85}$Te$_3$, the material where the quantum anomalous Hall effect was initially discovered at temperatures much lower than the ferromagnetic transition, $T_C$, the scanning tunneling microscopy studies have reported a large Dirac gap $sim20-100$ meV. The discrepancy between the low temperature of quantum anomalous Hall effect ($ll T_C$) and large spectroscopic Dirac gaps ($gg T_C$) found in magnetic topological insulators remains puzzling. Here, we used angle-resolved photoemission spectroscopy to study the surface electronic structure of pristine and potassium doped surface of Cr$_{0.15}$(Bi$_{0.1}$Sb$_{0.9}$)$_{1.85}$Te$_3$. Upon potassium deposition, the $p$-type surface state of pristine sample was turned into an $n$-type, allowing spectroscopic observation of Dirac point. We find a gapless surface state, with no evidence of a large Dirac gap reported in tunneling studies.



rate research

Read More

To achieve and utilize the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TI),it is necessary to open a Dirac-mass gap in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely used approach. But it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr$_{0.08}$(Bi$_{0.1}$Sb$_{0.9}$)$_{1.92}$Te$_3$. Simultaneous visualization of the Dirac-mass gap $Delta(r)$ reveals its intense disorder, which we demonstrate directly is related to fluctuations in $n(r)$, the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of $Delta(r)$ consistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship $Delta(r)propto n(r)$ is confirmed throughout, and exhibits an electron-dopant interaction energy $J^*$=145$meVcdot nm^2$. These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal-symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.
The electronic structure of the Cr ions in the diluted ferromagnetic semiconductor Zn$_{1-x}$Cr$_x$Te ($x=0.03$ and 0.15) thin films has been investigated using x-ray magnetic circular dichroism (XMCD) and photoemission spectroscopy (PES). Magnetic-field ($H$) and temperature ($T$) dependences of the Cr $2p$ XMCD spectra well correspond to the magnetization measured by a SQUID magnetometer. The line shape of the Cr $2p$ XMCD spectra is independent of $H$, $T$, and $x$, indicating that the ferromagnetism is originated from the same electronic states of the Cr ion. Cluster-model analysis indicates that although there are two or more kinds of Cr ions in the Zn$_{1-x}$Cr$_x$Te samples, the ferromagnetic XMCD signal is originated from Cr ions substituted for the Zn site. The Cr 3d partial density of states extracted using Cr $2p to 3d$ resonant PES shows a broad feature near the top of the valence band, suggesting strong $s$,$p$-$d$ hybridization. No density of states is detected at the Fermi level, consistent with their insulating behavior. Based on these findings, we conclude that double exchange mechanism cannot explain the ferromagnetism in Zn$_{1-x}$Cr$_{x}$Te.
The intrinsic antiferromagnetic topological insulator MnBi$_{2}$Te$_{4}$ undergoes a metamagnetic transition in a c-axis magnetic field. It has been predicted that ferromagnetic MnBi$_{2}$Te$_{4}$ is an ideal Weyl semimetal with a single pair of Weyl nodes. Here we report measurements of quantum oscillations detected in the field-induced ferromagnetic phase of MnBi$_{2-x}$Sb$_{x}$Te$_{4}$, where Sb substitution tunes the majority carriers from electrons to holes. Single frequency Shubnikov-de Haas oscillations were observed in a wide range of Sb concentrations (0.54 $leq$ x $leq$ 1.21). The evolution of the oscillation frequency and the effective mass shows reasonable agreement with the Weyl semimetal band-structure of ferromagnetic MnBi$_{2}$Te$_{4}$ predicted by density functional calculations. Intriguingly, the quantum oscillation frequency shows a strong temperature dependence, indicating that the electronic structure sensitively depends on magnetism.
We have performed x-ray magnetic circular dichroism (XMCD) and valence-band photoemission studies of the diluted ferromagnetic semiconductor Zn$_{1-x}$Cr$_x$Te. XMCD signals due to ferromagnetism were observed at the Cr 2p absorption edge. Comparison with atomic multiplet calculations suggests that the magnetically active component of the Cr ion was divalent under the tetrahedral crystal field with tetragonal distortion along the crystalline a-, b-, and c-axes. In the valence-band spectra, spectral weight near the Fermi level was strongly suppressed, suggesting the importance of Jahn-Teller effect and the strong Coulomb interaction between the Cr 3d electrons.
Alloys of Bi$_2$Te$_3$ and Sb$_2$Te$_3$ ((Bi$_{1-x}$Sb$_x$)$_2$Te$_3$) have played an essential role in the exploration of topological surface states, allowing us to study phenomena that would otherwise be obscured by bulk contributions to conductivity. Thin films of these alloys have been particularly important for tuning the energy of the Fermi level, a key step in observing spin-polarized surface currents and the quantum anomalous Hall effect. Previous studies reported the chemical tuning of the Fermi level to the Dirac point by controlling the Sb:Bi composition ratio, but the optimum ratio varies widely across various studies with no consensus. In this work, we use scanning tunneling microscopy and Landau level spectroscopy, in combination with X-ray photoemission spectroscopy to isolate the effects of growth factors such as temperature and composition, and to provide a microscopic picture of the role that disorder and composition play in determining the carrier density of epitaxially grown (Bi,Sb)$_2$Te$_3$ thin films. Using Landau level spectroscopy, we determine that the ideal Sb concentration to place the Fermi energy to within a few meV of the Dirac point is $xsim 0.7$. However, we find that the post- growth annealing temperature can have a drastic impact on microscopic structure as well as carrier density. In particular, we find that when films are post-growth annealed at high temperature, better crystallinity and surface roughness are achieved; but this also produces a larger Te defect density, adding n-type carriers. This work provides key information necessary for optimizing thin film quality in this fundamentally and technologically important class of materials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا