Do you want to publish a course? Click here

Imaging Dirac-Mass Disorder from Magnetic Dopant-Atoms in the Ferromagnetic Topological Insulator Cr$_x$(Bi$_{0.1}$Sb$_{0.9}$)$_{2-x}$Te$_3$

407   0   0.0 ( 0 )
 Added by Chung Koo Kim
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

To achieve and utilize the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TI),it is necessary to open a Dirac-mass gap in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely used approach. But it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr$_{0.08}$(Bi$_{0.1}$Sb$_{0.9}$)$_{1.92}$Te$_3$. Simultaneous visualization of the Dirac-mass gap $Delta(r)$ reveals its intense disorder, which we demonstrate directly is related to fluctuations in $n(r)$, the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of $Delta(r)$ consistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship $Delta(r)propto n(r)$ is confirmed throughout, and exhibits an electron-dopant interaction energy $J^*$=145$meVcdot nm^2$. These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal-symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.



rate research

Read More

Magnetism breaks the time reversal symmetry expected to open a Dirac gap in 3D topological insulators that consequently leads to quantum anomalous Hall effect. The most common approach of inducing ferromagnetic state is by doping magnetic 3$d$ elements into bulk of 3D topological insulators. In Cr$_{0.15}$(Bi$_{0.1}$Sb$_{0.9}$)$_{1.85}$Te$_3$, the material where the quantum anomalous Hall effect was initially discovered at temperatures much lower than the ferromagnetic transition, $T_C$, the scanning tunneling microscopy studies have reported a large Dirac gap $sim20-100$ meV. The discrepancy between the low temperature of quantum anomalous Hall effect ($ll T_C$) and large spectroscopic Dirac gaps ($gg T_C$) found in magnetic topological insulators remains puzzling. Here, we used angle-resolved photoemission spectroscopy to study the surface electronic structure of pristine and potassium doped surface of Cr$_{0.15}$(Bi$_{0.1}$Sb$_{0.9}$)$_{1.85}$Te$_3$. Upon potassium deposition, the $p$-type surface state of pristine sample was turned into an $n$-type, allowing spectroscopic observation of Dirac point. We find a gapless surface state, with no evidence of a large Dirac gap reported in tunneling studies.
Alloys of Bi$_2$Te$_3$ and Sb$_2$Te$_3$ ((Bi$_{1-x}$Sb$_x$)$_2$Te$_3$) have played an essential role in the exploration of topological surface states, allowing us to study phenomena that would otherwise be obscured by bulk contributions to conductivity. Thin films of these alloys have been particularly important for tuning the energy of the Fermi level, a key step in observing spin-polarized surface currents and the quantum anomalous Hall effect. Previous studies reported the chemical tuning of the Fermi level to the Dirac point by controlling the Sb:Bi composition ratio, but the optimum ratio varies widely across various studies with no consensus. In this work, we use scanning tunneling microscopy and Landau level spectroscopy, in combination with X-ray photoemission spectroscopy to isolate the effects of growth factors such as temperature and composition, and to provide a microscopic picture of the role that disorder and composition play in determining the carrier density of epitaxially grown (Bi,Sb)$_2$Te$_3$ thin films. Using Landau level spectroscopy, we determine that the ideal Sb concentration to place the Fermi energy to within a few meV of the Dirac point is $xsim 0.7$. However, we find that the post- growth annealing temperature can have a drastic impact on microscopic structure as well as carrier density. In particular, we find that when films are post-growth annealed at high temperature, better crystallinity and surface roughness are achieved; but this also produces a larger Te defect density, adding n-type carriers. This work provides key information necessary for optimizing thin film quality in this fundamentally and technologically important class of materials.
A topological p-n junction (TPNJ) is an important concept to control spin and charge transport on a surface of three dimensional topological insulators (3D-TIs). Here we report successful fabrication of such TPNJ on a surface of 3D-TI Bi$_{2-x}$Sb$_x$Te$_{3-y}$Se$_y$ thin films and experimental observation of the electrical transport. By tuning the chemical potential of n-type topological Dirac surface of BSTS on its top half by employing tetrafluoro-7,7,8,8-tetracyanoquinodimethane as an organic acceptor molecule, a half surface can be converted to p-type with leaving the other half side as the opposite n-type, and consequently TPNJ can be created. By sweeping the back-gate voltage in the field effect transistor structure, the TPNJ was controlled both on the bottom and the top surfaces. A dramatic change in electrical transport observed at the TPNJ on 3D-TI thin films promises novel spin and charge transport of 3D-TIs for future spintronics.
The interplay between magnetism and non-trivial topology in magnetic topological insulators (MTI) is expected to give rise to a variety of exotic topological quantum phenomena, such as the quantum anomalous Hall (QAH) effect and the topological axion states. A key to assessing these novel properties is to tune the Fermi level in the exchange gap of the Dirac surface band. MnBi$_2$Te$_4$ possesses non-trivial band topology with intrinsic antiferromagnetic (AFM) state that can enable all of these quantum states, however, highly electron-doped nature of the MnBi$_2$Te$_4$ crystals obstructs the exhibition of the gapped topological surface states. Here, we tailor the material through Sb-substitution to reveal the gapped surface states in MnBi$_{2-x}$Sb$_{x}$Te$_{4}$ (MBST). By shifting the Fermi level into the bulk band gap of MBST, we access the surface states and show a band gap of 50 meV at the Dirac point from quasi-particle interference (QPI) measured by scanning tunneling microscopy/spectroscopy (STM/STS). Surface-dominant conduction is confirmed below the Neel temperature through transport spectroscopy measured by multiprobe STM. The surface band gap is robust against out-of-plane magnetic field despite the promotion of field-induced ferromagnetism. The realization of bulk-insulating MTI with the large exchange gap offers a promising platform for exploring emergent topological phenomena.
206 - A. Kogar , S. Vig , A. Thaler 2015
We used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi$_2$Se$_3$ and Bi$_{0.5}$Sb$_{1.5}$Te$_{3-x}$Se$_{x}$. Our goal was to identify the spin plasmon predicted by Raghu and co-workers [S. Raghu, et al., Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carrers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface, $chi (textbf{q},omega)$, at THz energy scales, and is the most likely origin of a quasiparticle dispersion kink observed in previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا