Do you want to publish a course? Click here

Directional electron-filtering at a superconductor-semiconductor interface

108   0   0.0 ( 0 )
 Added by Daniel Breunig
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We evaluate the microscopically relevant parameters for electrical transport of hybrid superconductor-semiconductor interfaces. In contrast to the commonly used geometrically constricted metallic systems, we focus on materials with dissimilar electronic properties like low-carrier density semiconductors combined with superconductors, without imposing geometric confinement. We find an intrinsic mode-selectivity, a directional momentum-filter, due to the differences in electronic band-structure, which creates a separation of electron reservoirs each at the opposite sides of the semiconductor, while at the same time selecting modes propagating almost perpendicular to the interface. The electronic separation coexists with a transport current dominated by Andreev reflection and low elastic back-scattering, both dependent on the gate-controllable electronic properties of the semiconductor.

rate research

Read More

The Bean-Livingston barrier at the interface of type-II superconductor/soft-magnet heterostructures is studied on the basis of the classical London approach. This shows a characteristic dependence on the geometry of the particular structure and its interface as well as on the relative permeability of the involved magnetic constituent. The modification of the barrier by the presence of the magnet can be significant, as demonstrated for a cylindrical superconducting filament covered with a coaxial magnetic sheath. Using typical values of the relative permeability, the critical field of first penetration of magnetic flux is predicted to be strongly enhanced, whereas the variation of the average critical current density with the external field is strongly depressed, in accord with the observations of recent experiments.
84 - Yang Ma , Jiasen Niu , Wenyu Xing 2020
Superconductivity has been one of the most fascinating quantum states of matter for over several decades. Among the superconducting materials, LaAlO3/SrTiO3 interface is of particularly interest since superconductivity exists between two insulating materials, which provides it with various unique applications compared with bulk superconductors and makes it a suitable platform to study the quantum Hall effect, charge density wave, superconductivity and magnetism in one device. Therefore, a lot of efforts have been made to search new superconducting oxide interface states with higher superconducting critical temperature (TC). Recently, a superconducting state with TC ~ 2 K has been found at the interface between a ferromagnetic insulator EuO and a band insulator (111)-KTaO3. Here, we report the experimental investigation of the superconductor-metal quantum phase transition of the EuO/KTaO3 interface. Around the transition, a divergence of the dynamical critical exponent is observed, which supports the quantum Griffiths singularity in the EuO/KTaO3 interface. The quantum Griffiths singularity could be attributed to large rare superconducting regions and quenched disorders at the interface. Our results could pave the way for studying the exotic superconducting properties at the EuO/KTaO3 interface.
We investigate inverse proximity effects in a spin-triplet superconductor (TSC) interfaced with a ferromagnet (FM), assuming different types of magnetic profiles and chiral or helical pairings. The region of the coexistence of spin-triplet superconductivity and magnetism is significantly influenced by the orientation and spatial extension of the magnetization with respect to the spin configuration of the Cooper pairs, resulting into clearcut anisotropy signatures. A characteristic mark of the inverse proximity effect arises in the induced spin-polarization at the TSC interface. This is unexpectedly stronger when the magnetic proximity is weaker, thus unveiling immediate detection signatures for spin-triplet pairs. We show that an anomalous magnetic proximity can occur at the interface between the itinerant ferromagnet, SrRuO$_3$, and the unconventional superconductor Sr$_2$RuO$_4$. Such scenario indicates the potential to design characteristic inverse proximity effects in experimentally available SrRuO$_3$-Sr$_2$RuO$_4$ heterostructures and to assess the occurrence of spin-triplet pairs in the highly debated superconducting phase of Sr$_2$RuO$_4$.
We study the quantum Goos-H{a}nchen(GH) effect for wave-packet dynamics at a normal/superconductor (NS) interface. We find that the effect is amplified by a factor $(E_F/Delta)$, with $E_F$ the Fermi energy and $Delta$ the gap. Interestingly, the GH effect appears only as a time delay $delta t$ without any lateral shift, and the corresponding delay length is about $(E_F/Delta)lambda_F$, with $lambda_F$ the Fermi wavelength. This makes the NS interface sticky when $Delta ll E_F$, since typically GH effects are of wavelength order. This sticky behavior can be further enhanced by a resonance mode in NSNS interface. Finally, for a large $Delta$, the resonance-mode effect makes a transition from Andreev to the specular electron reflection as the width of the sandwiched superconductor is reduced.
57 - Peng Lv , Ai-Min Guo , Huaiyu Li 2017
We study spin transport through a normal metal-spin superconductor junction. A spin-flip reflection is demonstrated at the interface, where a spin-up electron incident from the normal metal can be reflected as a spin-down electron and the spin $2times hbar/2$ will be injected into the spin superconductor. When the (spin) voltage is smaller than the gap of the spin superconductor, the spin-flip reflection determines the transport properties of the junction. We consider both graphene-based (linear-dispersion-relation) and quadratic-dispersion-relation normal metal-spin superconductor junctions in detail. For the two-dimensional graphene-based junction, the spin-flip reflected electron can be along the specular direction (retro-direction) when the incident and reflected electron locates in the same band (different bands). A perfect spin-flip reflection can occur when the incident electron is normal to the interface, and the reflection coefficient is slightly suppressed for the oblique incident case. As a comparison, for the one-dimensional quadratic-dispersion-relation junction, the spin-flip reflection coefficient can reach 1 at certain incident energies. In addition, both the charge current and the spin current under a charge (spin) voltage are studied. The spin conductance is proportional to the spin-flip reflection coefficient when the spin voltage is less than the gap of the spin superconductor. These results will help us get a better understanding of spin transport through the normal metal-spin superconductor junction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا