Do you want to publish a course? Click here

T-WaveNet: Tree-Structured Wavelet Neural Network for Sensor-Based Time Series Analysis

155   0   0.0 ( 0 )
 Added by Liu Minhao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Sensor-based time series analysis is an essential task for applications such as activity recognition and brain-computer interface. Recently, features extracted with deep neural networks (DNNs) are shown to be more effective than conventional hand-crafted ones. However, most of these solutions rely solely on the network to extract application-specific information carried in the sensor data. Motivated by the fact that usually a small subset of the frequency components carries the primary information for sensor data, we propose a novel tree-structured wavelet neural network for sensor data analysis, namely emph{T-WaveNet}. To be specific, with T-WaveNet, we first conduct a power spectrum analysis for the sensor data and decompose the input signal into various frequency subbands accordingly. Then, we construct a tree-structured network, and each node on the tree (corresponding to a frequency subband) is built with an invertible neural network (INN) based wavelet transform. By doing so, T-WaveNet provides more effective representation for sensor information than existing DNN-based techniques, and it achieves state-of-the-art performance on various sensor datasets, including UCI-HAR for activity recognition, OPPORTUNITY for gesture recognition, BCICIV2a for intention recognition, and NinaPro DB1 for muscular movement recognition.



rate research

Read More

397 - Ziyu Chen , Hau-Tieng Wu 2020
To handle time series with complicated oscillatory structure, we propose a novel time-frequency (TF) analysis tool that fuses the short time Fourier transform (STFT) and periodic transform (PT). Since many time series oscillate with time-varying frequency, amplitude and non-sinusoidal oscillatory pattern, a direct application of PT or STFT might not be suitable. However, we show that by combining them in a proper way, we obtain a powerful TF analysis tool. We first combine the Ramanujan sums and $l_1$ penalization to implement the PT. We call the algorithm Ramanujan PT (RPT). The RPT is of its own interest for other applications, like analyzing short signal composed of components with integer periods, but that is not the focus of this paper. Second, the RPT is applied to modify the STFT and generate a novel TF representation of the complicated time series that faithfully reflect the instantaneous frequency information of each oscillatory components. We coin the proposed TF analysis the Ramanujan de-shape (RDS) and vectorized RDS (vRDS). In addition to showing some preliminary analysis results on complicated biomedical signals, we provide theoretical analysis about RPT. Specifically, we show that the RPT is robust to three commonly encountered noises, including envelop fluctuation, jitter and additive noise.
130 - Ailin Deng , Bryan Hooi 2021
Given high-dimensional time series data (e.g., sensor data), how can we detect anomalous events, such as system faults and attacks? More challengingly, how can we do this in a way that captures complex inter-sensor relationships, and detects and explains anomalies which deviate from these relationships? Recently, deep learning approaches have enabled improvements in anomaly detection in high-dimensional datasets; however, existing methods do not explicitly learn the structure of existing relationships between variables, or use them to predict the expected behavior of time series. Our approach combines a structure learning approach with graph neural networks, additionally using attention weights to provide explainability for the detected anomalies. Experiments on two real-world sensor datasets with ground truth anomalies show that our method detects anomalies more accurately than baseline approaches, accurately captures correlations between sensors, and allows users to deduce the root cause of a detected anomaly.
The Nonlinear autoregressive exogenous (NARX) model, which predicts the current value of a time series based upon its previous values as well as the current and past values of multiple driving (exogenous) series, has been studied for decades. Despite the fact that various NARX models have been developed, few of them can capture the long-term temporal dependencies appropriately and select the relevant driving series to make predictions. In this paper, we propose a dual-stage attention-based recurrent neural network (DA-RNN) to address these two issues. In the first stage, we introduce an input attention mechanism to adaptively extract relevant driving series (a.k.a., input features) at each time step by referring to the previous encoder hidden state. In the second stage, we use a temporal attention mechanism to select relevant encoder hidden states across all time steps. With this dual-stage attention scheme, our model can not only make predictions effectively, but can also be easily interpreted. Thorough empirical studies based upon the SML 2010 dataset and the NASDAQ 100 Stock dataset demonstrate that the DA-RNN can outperform state-of-the-art methods for time series prediction.
Wearable sensor-based human activity recognition (HAR) has been a research focus in the field of ubiquitous and mobile computing for years. In recent years, many deep models have been applied to HAR problems. However, deep learning methods typically require a large amount of data for models to generalize well. Significant variances caused by different participants or diverse sensor devices limit the direct application of a pre-trained model to a subject or device that has not been seen before. To address these problems, we present an invariant feature learning framework (IFLF) that extracts common information shared across subjects and devices. IFLF incorporates two learning paradigms: 1) meta-learning to capture robust features across seen domains and adapt to an unseen one with similarity-based data selection; 2) multi-task learning to deal with data shortage and enhance overall performance via knowledge sharing among different subjects. Experiments demonstrated that IFLF is effective in handling both subject and device diversion across popular open datasets and an in-house dataset. It outperforms a baseline model of up to 40% in test accuracy.
In this paper, we propose an online speaker adaptation method for WaveNet-based neural vocoders in order to improve their performance on speaker-independent waveform generation. In this method, a speaker encoder is first constructed using a large speaker-verification dataset which can extract a speaker embedding vector from an utterance pronounced by an arbitrary speaker. At the training stage, a speaker-aware WaveNet vocoder is then built using a multi-speaker dataset which adopts both acoustic feature sequences and speaker embedding vectors as conditions.At the generation stage, we first feed the acoustic feature sequence from a test speaker into the speaker encoder to obtain the speaker embedding vector of the utterance. Then, both the speaker embedding vector and acoustic features pass the speaker-aware WaveNet vocoder to reconstruct speech waveforms. Experimental results demonstrate that our method can achieve a better objective and subjective performance on reconstructing waveforms of unseen speakers than the conventional speaker-independent WaveNet vocoder.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا