No Arabic abstract
A partial least squares regression is proposed for estimating the function-on-function regression model where a functional response and multiple functional predictors consist of random curves with quadratic and interaction effects. The direct estimation of a function-on-function regression model is usually an ill-posed problem. To overcome this difficulty, in practice, the functional data that belong to the infinite-dimensional space are generally projected into a finite-dimensional space of basis functions. The function-on-function regression model is converted to a multivariate regression model of the basis expansion coefficients. In the estimation phase of the proposed method, the functional variables are approximated by a finite-dimensional basis function expansion method. We show that the partial least squares regression constructed via a functional response, multiple functional predictors, and quadratic/interaction terms of the functional predictors is equivalent to the partial least squares regression constructed using basis expansions of functional variables. From the partial least squares regression of the basis expansions of functional variables, we provide an explicit formula for the partial least squares estimate of the coefficient function of the function-on-function regression model. Because the true forms of the models are generally unspecified, we propose a forward procedure for model selection. The finite sample performance of the proposed method is examined using several Monte Carlo experiments and two empirical data analyses, and the results were found to compare favorably with an existing method.
In this paper, a functional partial quantile regression approach, a quantile regression analog of the functional partial least squares regression, is proposed to estimate the function-on-function linear quantile regression model. A partial quantile covariance function is first used to extract the functional partial quantile regression basis functions. The extracted basis functions are then used to obtain the functional partial quantile regression components and estimate the final model. In our proposal, the functional forms of the discretely observed random variables are first constructed via a finite-dimensional basis function expansion method. The functional partial quantile regression constructed using the functional random variables is approximated via the partial quantile regression constructed using the basis expansion coefficients. The proposed method uses an iterative procedure to extract the partial quantile regression components. A Bayesian information criterion is used to determine the optimum number of retained components. The proposed functional partial quantile regression model allows for more than one functional predictor in the model. However, the true form of the proposed model is unspecified, as the relevant predictors for the model are unknown in practice. Thus, a forward variable selection procedure is used to determine the significant predictors for the proposed model. Moreover, a case-sampling-based bootstrap procedure is used to construct pointwise prediction intervals for the functional response. The predictive performance of the proposed method is evaluated using several Monte Carlo experiments under different data generation processes and error distributions. Through an empirical data example, air quality data are analyzed to demonstrate the effectiveness of the proposed method.
Forecasting defect proneness of source code has long been a major research concern. Having an estimation of those parts of a software system that most likely contain bugs may help focus testing efforts, reduce costs, and improve product quality. Many prediction models and approaches have been introduced during the past decades that try to forecast bugged code elements based on static source code metrics, change and history metrics, or both. However, there is still no universal best solution to this problem, as most suitable features and models vary from dataset to dataset and depend on the context in which we use them. Therefore, novel approaches and further studies on this topic are highly necessary. In this paper, we employ a chemometric approach - Partial Least Squares with Discriminant Analysis (PLS-DA) - for predicting bug prone Classes in Java programs using static source code metrics. To our best knowledge, PLS-DA has never been used before as a statistical approach in the software maintenance domain for predicting software errors. In addition, we have used rigorous statistical treatments including bootstrap resampling and randomization (permutation) test, and evaluation for representing the software engineering results. We show that our PLS-DA based prediction model achieves superior performances compared to the state-of-the-art approaches (i.e. F-measure of 0.44-0.47 at 90% confidence level) when no data re-sampling applied and comparable to others when applying up-sampling on the largest open bug dataset, while training the model is significantly faster, thus finding optimal parameters is much easier. In terms of completeness, which measures the amount of bugs contained in the Java Classes predicted to be defective, PLS-DA outperforms every other algorithm: it found 69.3% and 79.4% of the total bugs with no re-sampling and up-sampling, respectively.
We present a new functional Bayes classifier that uses principal component (PC) or partial least squares (PLS) scores from the common covariance function, that is, the covariance function marginalized over groups. When the groups have different covariance functions, the PC or PLS scores need not be independent or even uncorrelated. We use copulas to model the dependence. Our method is semiparametric; the marginal densities are estimated nonparametrically by kernel smoothing and the copula is modeled parametrically. We focus on Gaussian and t-copulas, but other copulas could be used. The strong performance of our methodology is demonstrated through simulation, real data examples, and asymptotic properties.
We study additive function-on-function regression where the mean response at a particular time point depends on the time point itself as well as the entire covariate trajectory. We develop a computationally efficient estimation methodology based on a novel combination of spline bases with an eigenbasis to represent the trivariate kernel function. We discuss prediction of a new response trajectory, propose an inference procedure that accounts for total variability in the predicted response curves, and construct pointwise prediction intervals. The estimation/inferential procedure accommodates realistic scenarios such as correlated error structure as well as sparse and/or irregular designs. We investigate our methodology in finite sample size through simulations and two real data applications.
We consider a resampling scheme for parameters estimates in nonlinear regression models. We provide an estimation procedure which recycles, via random weighting, the relevant parameters estimates to construct consistent estimates of the sampling distribution of the various estimates. We establish the asymptotic normality of the resampled estimates and demonstrate the applicability of the recycling approach in a small simulation study and via example.