No Arabic abstract
We study the finite distance boundary symmetry current algebra of the most general first order theory of 3d gravity. We show that the space of quadratic generators contains diffeomorphisms but also a notion of dual diffeomorphisms, which together form either a double Witt or centreless BMS$_3$ algebra. The relationship with the usual asymptotic symmetry algebra relies on a duality between the null and angular directions, which is possible thanks to the existence of the dual diffeomorphisms.
We show that the phase space of three-dimensional gravity contains two layers of dualities: between diffeomorphisms and a notion of dual diffeomorphisms on the one hand, and between first order curvature and torsion on the other hand. This is most elegantly revealed and understood when studying the most general Lorentz-invariant first order theory in connection and triad variables, described by the so-called Mielke-Baekler Lagrangian. By analyzing the quasi-local symmetries of this theory in the covariant phase space formalism, we show that in each sector of the torsion/curvature duality there exists a well-defined notion of dual diffeomorphism, which furthermore follows uniquely from the Sugawara construction. Together with the usual diffeomorphisms, these duals form at finite distance, without any boundary conditions, and for any sign of the cosmological constant, a centreless double Virasoro algebra which in the flat case reduces to the BMS$_3$ algebra. These algebras can then be centrally-extended via the twisted Sugawara construction. This shows that the celebrated results about asymptotic symmetry algebras are actually generic features of three-dimensional gravity at any finite distance. They are however only revealed when working in first order connection and triad variables, and a priori inaccessible from Chern-Simons theory. As a bonus, we study the second order equations of motion of the Mielke-Baekler model, as well as the on-shell Lagrangian. This reveals the duality between Riemannian metric and teleparallel gravity, and a new candidate theory for three-dimensional massive gravity which we call teleparallel topologically massive gravity.
Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
In this paper we use the AdS/CFT correspondence to refine and then establish a set of old conjectures about symmetries in quantum gravity. We first show that any global symmetry, discrete or continuous, in a bulk quantum gravity theory with a CFT dual would lead to an inconsistency in that CFT, and thus that there are no bulk global symmetries in AdS/CFT. We then argue that any long-range bulk gauge symmetry leads to a global symmetry in the boundary CFT, whose consistency requires the existence of bulk dynamical objects which transform in all finite-dimensional irreducible representations of the bulk gauge group. We mostly assume that all internal symmetry groups are compact, but we also give a general condition on CFTs, which we expect to be true quite broadly, which implies this. We extend all of these results to the case of higher-form symmetries. Finally we extend a recently proposed new motivation for the weak gravity conjecture to more general gauge groups, reproducing the convex hull condition of Cheung and Remmen. An essential point, which we dwell on at length, is precisely defining what we mean by gauge and global symmetries in the bulk and boundary. Quantum field theory results we meet while assembling the necessary tools include continuous global symmetries without Noether currents, new perspectives on spontaneous symmetry-breaking and t Hooft anomalies, a new order parameter for confinement which works in the presence of fundamental quarks, a Hamiltonian lattice formulation of gauge theories with arbitrary discrete gauge groups, an extension of the Coleman-Mandula theorem to discrete symmetries, and an improved explanation of the decay $pi^0togamma gamma$ in the standard model of particle physics. We also describe new black hole solutions of the Einstein equation in $d+1$ dimensions with horizon topology $mathbb{T}^ptimes mathbb{S}^{d-p-1}$.
The aim of these Lectures is to provide a brief overview of the subject of asymptotic symmetries of gauge and gravity theories in asymptotically flat spacetimes as background material for celestial holography.
We consider the scattering of massless particles coupled to an abelian gauge field in 2n-dimensional Minkowski spacetime. Weinbergs soft photon theorem is recast as Ward identities for infinitely many new nontrivial symmetries of the massless QED S-matrix, with one such identity arising for each propagation direction of the soft photon. These symmetries are identified as large gauge transformations with angle-dependent gauge parameters that are constant along the null generators of null infinity. Almost all of the symmetries are spontaneously broken in the standard vacuum and the soft photons are the corresponding Goldstone bosons. Our result establishes a relationship between soft theorems and asymptotic symmetry groups in any even dimension.