We consider the scattering of massless particles coupled to an abelian gauge field in 2n-dimensional Minkowski spacetime. Weinbergs soft photon theorem is recast as Ward identities for infinitely many new nontrivial symmetries of the massless QED S-matrix, with one such identity arising for each propagation direction of the soft photon. These symmetries are identified as large gauge transformations with angle-dependent gauge parameters that are constant along the null generators of null infinity. Almost all of the symmetries are spontaneously broken in the standard vacuum and the soft photons are the corresponding Goldstone bosons. Our result establishes a relationship between soft theorems and asymptotic symmetry groups in any even dimension.
By applying loop quantum gravity techniques to 3D gravity with a positive cosmological constant $Lambda$, we show how the local gauge symmetry of the theory, encoded in the constraint algebra, acquires the quantum group structure of $so_q(4)$, with $ q = exp{(ihbar sqrt{Lambda}/2kappa)}$. By means of an Inonu-Wigner contraction of the quantum group bi-algebra, keeping $kappa$ finite, we obtain the kappa-Poincare algebra of the flat quantum space-time symmetries.
The aim of these Lectures is to provide a brief overview of the subject of asymptotic symmetries of gauge and gravity theories in asymptotically flat spacetimes as background material for celestial holography.
In this paper we investigate a particular ghost-free bimetric theory that exhibits the partially massless (PM) symmetry at quadratic order. At this order the global SO(1,4) symmetry of the theory is enhanced to SO(1,5). We show that this global symmetry becomes inconsistent at cubic order, in agreement with a previous calculation. Furthermore, we find that the PM symmetry of this theory cannot be extended beyond cubic order in the PM field. More importantly, it is shown that the PM symmetry cannot be extended to quartic order in any theory with one massless and one massive spin-2 fields.
We constrain theories of a massive spin-2 particle coupled to a massless spin-2 particle by demanding the absence of a time advance in eikonal scattering. This is an $S$-matrix consideration that leads to model-independent constraints on the cubic vertices present in the theory. Of the possible cubic vertices for the two spin-2 particles, the requirement of subluminality leaves a particular linear combination of cubic vertices of the Einstein--Hilbert type. Either the cubic vertices must appear in this combination or new physics must enter at a scale parametrically the same as the mass of the massive spin-2 field. These conclusions imply that there is a one-parameter family of ghost-free bimetric theories of gravity that are consistent with subluminal scattering. When both particles couple to additional matter, subluminality places additional constraints on the matter couplings. We additionally reproduce these constraints by considering classical scattering off of a shockwave background in the ghost-free bimetric theory.
General $mathcal{N}=(1,0)$ supergravity-matter systems in six dimensions may be described using one of the two fully fledged superspace formulations for conformal supergravity: (i) $mathsf{SU}(2)$ superspace; and (ii) conformal superspace. With motivation to develop rigid supersymmetric field theories in curved space, this paper is devoted to the study of the geometric symmetries of supergravity backgrounds. In particular, we introduce the notion of a conformal Killing spinor superfield $epsilon^alpha$, which proves to generate extended superconformal transformations. Among its cousins are the conformal Killing vector $xi^a$ and tensor $zeta^{a(n)}$ superfields. The former parametrise conformal isometries of supergravity backgrounds, which in turn yield symmetries of every superconformal field theory. Meanwhile, the conformal Killing tensors of a given background are associated with higher symmetries of the hypermultiplet. By studying the higher symmetries of a non-conformal vector multiplet we introduce the concept of a Killing tensor superfield. We also analyse the problem of computing higher symmetries for the conformal dAlembertian in curved space and demonstrate that, beyond the first-order case, these operators are defined only on conformally flat backgrounds.