Do you want to publish a course? Click here

Scalarized nutty wormholes

56   0   0.0 ( 0 )
 Added by Burkhard Kleihaus
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct scalarized wormholes with a NUT charge in higher curvature theories. We consider both Einstein-scalar-Gauss-Bonnet and Einstein-scalar-Chern-Simons theories, following a recent paper by Brihaye et al. [1], where spontaneously scalarised Schwarzschild-NUT solutions were studied. By varying the coupling parameter and the scalar charge we determine the domain of existence of the scalarized nutty wormholes, and their dependence on the NUT charge. In the Gauss-Bonnet case the known set of scalarized wormholes [2] is reached in the limit of vanishing NUT charge. In the Chern-Simons case, however, the limit is peculiar, since with vanishing NUT charge the coupling constant diverges. We focus on scalarized nutty wormholes with a single throat and study their properties. All these scalarized nutty wormholes feature a critical polar angle, beyond which closed timelike curves are present.

rate research

Read More

137 - Burkhard Kleihaus , 2015
In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hairy black holes. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
It was recently shown that a scalar field suitably coupled to the Gauss-Bonnet invariant $mathcal{G}$ can undergo a spin-induced linear tachyonic instability near a Kerr black hole. This instability appears only once the dimensionless spin $j$ is sufficiently large, that is, $j gtrsim 0.5$. A tachyonic instability is the hallmark of spontaneous scalarization. Focusing, for illustrative purposes, on a class of theories that do exhibit this instability, we show that stationary, rotating black hole solutions do indeed have scalar hair once the spin-induced instability threshold is exceeded, while black holes that lie below the threshold are described by the Kerr solution. Our results provide strong support for spin-induced black hole scalarization.
The phenomenon of spontaneous scalarization of Reissner-Nordstr{o}m (RN) black holes has recently been found in an Einstein-Maxwell-scalar (EMS) model due to a non-minimal coupling between the scalar and Maxwell fields. Non-linear electrodynamics, e.g., Born-Infeld (BI) electrodynamics, generalizes Maxwells theory in the strong field regime. Non-minimally coupling the BI field to the scalar field, we study spontaneous scalarization of an Einstein-Born-Infeld-scalar (EBIS) model in this paper. It shows that there are two types of scalarized black hole solutions, i.e., scalarized RN-like and Schwarzschild-like solutions. Although the behavior of scalarized RN-like solutions in the EBIS model is quite similar to that of scalarize solutions in the EMS model, we find that there exist significant differences between scalarized Schwarzschild-like solutions in the EBIS model and scalarized solutions in the EMS model. In particular, the domain of existence of scalarized Schwarzschild-like solutions possesses a certain region, which is composed of two branches. The branch of larger horizon area is a family of disconnected scalarized solutions, which do not bifurcate from scalar-free black holes. However, the branch of smaller horizon area may or may not bifurcate from scalar-free black holes depending on the parameters. Additionally, these two branches of scalarized solutions can be both entropically disfavored over comparable scalar-free black holes in some parameter region.
112 - E.I. Guendelman 2010
Evidence to the case that classical gravitation provides the clue to make sense out of quantum gravity is presented. The key observation is the existence in classical gravitation of child universe solutions or almost solutions, almost because of some singularity problems. The difficulties of these child universe solutions due to their generic singularity problems will be very likely be cured by quantum effects, just like for example almost instanton solutions are made relevant in gauge theories with breaking of conformal invariance. Some well motivated modifcations of General Relativity where these singularity problems are absent even at the classical level are discussed. High energy density excitations, responsible for UV divergences in quantum field theories, including quantum gravity, are likely to be the source of child universes which carry them out of the original space time. This decoupling could prevent these high UV excitations from having any influence on physical amplitudes. Child universe production could therefore be responsible for UV regularization in quantum field theories which take into account semiclassically gravitational effects. Child universe production in the last stages of black hole evaporation, the prediction of absence of tranplanckian primordial perturbations, connection to the minimum length hypothesis and in particular the connection to the maximal curvature hypothesis are discussed. Some discussion of superexcited states in the case these states are Kaluza Klein excitations is carried out. Finally, the posibility of obtaining string like effects from the wormholes associated with the child universes is discussed.
We report on a numerical investigation of the stability of scalarized black holes in Einstein dilaton Gauss-Bonnet (EdGB) gravity in the full dynamical theory, though restricted to spherical symmetry. We find evidence that for sufficiently small curvature-couplings the resulting scalarized black hole solutions are nonlinearly stable. For such small couplings, we show that an elliptic region forms inside these EdGB black hole spacetimes (prior to any curvature singularity), and give evidence that this region remains censored from asymptotic view. However, for coupling values superextremal relative to a given black hole mass, an elliptic region forms exterior to the horizon, implying the exterior Cauchy problem is ill-posed in this regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا