Do you want to publish a course? Click here

Wormholes and Child Universes

131   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Evidence to the case that classical gravitation provides the clue to make sense out of quantum gravity is presented. The key observation is the existence in classical gravitation of child universe solutions or almost solutions, almost because of some singularity problems. The difficulties of these child universe solutions due to their generic singularity problems will be very likely be cured by quantum effects, just like for example almost instanton solutions are made relevant in gauge theories with breaking of conformal invariance. Some well motivated modifcations of General Relativity where these singularity problems are absent even at the classical level are discussed. High energy density excitations, responsible for UV divergences in quantum field theories, including quantum gravity, are likely to be the source of child universes which carry them out of the original space time. This decoupling could prevent these high UV excitations from having any influence on physical amplitudes. Child universe production could therefore be responsible for UV regularization in quantum field theories which take into account semiclassically gravitational effects. Child universe production in the last stages of black hole evaporation, the prediction of absence of tranplanckian primordial perturbations, connection to the minimum length hypothesis and in particular the connection to the maximal curvature hypothesis are discussed. Some discussion of superexcited states in the case these states are Kaluza Klein excitations is carried out. Finally, the posibility of obtaining string like effects from the wormholes associated with the child universes is discussed.



rate research

Read More

In 6D general relativity with a phantom scalar field as a source of gravity, we present solutions that implement a transition from an effective 4D geometry times small extra dimensions to an effectively 6D space-time where the physical laws are different from ours. We consider manifolds with the structure M0 x M1 x M2, where M0 is 2D Lorentzian space-time while each of M1 and M2 can be a 2-sphere or a 2-torus. Some solutions describe wormholes with spherical symmetry in our space-time and toroidal extra dimensions. Others are of black universe type: at one end there is a 6D asymptotically anti-de Sitter black hole while beyond the horizon the geometry tends to a 4D de Sitter cosmology times a small 2D spherical extra space.
We construct scalarized wormholes with a NUT charge in higher curvature theories. We consider both Einstein-scalar-Gauss-Bonnet and Einstein-scalar-Chern-Simons theories, following a recent paper by Brihaye et al. [1], where spontaneously scalarised Schwarzschild-NUT solutions were studied. By varying the coupling parameter and the scalar charge we determine the domain of existence of the scalarized nutty wormholes, and their dependence on the NUT charge. In the Gauss-Bonnet case the known set of scalarized wormholes [2] is reached in the limit of vanishing NUT charge. In the Chern-Simons case, however, the limit is peculiar, since with vanishing NUT charge the coupling constant diverges. We focus on scalarized nutty wormholes with a single throat and study their properties. All these scalarized nutty wormholes feature a critical polar angle, beyond which closed timelike curves are present.
We consider four-dimensional wormholes immersed in bosonic matter. While their existence is based on the presence of a phantom field, many of their interesting physical properties are bestowed upon them by an ordinary complex scalar field, which carries only a mass term, but no self-interactions. For instance, the rotation of the scalar field induces a rotation of the throat as well. Moreover, the bosonic matter need not be symmetrically distributed in both asymptotically flat regions, leading to symmetric and asymmetric rotating wormhole spacetimes. The presence of the rotating matter also allows for wormholes with a double throat.
In this paper, we will study the rainbow deformation of the FRW cosmology in both Einstein gravity and Gauss-Bonnet gravity. We will demonstrate that the singularity in the FRW cosmology can be removed because of the rainbow deformation of the FRW metric. We will obtain the general constraints required for the FRW cosmology to be free from singularities. It will be observed that the inclusion of Gauss-Bonnet gravity can significantly change the constraints required to obtain a nonsingular universes. We will use a rainbow functions motivated from the hard spectra of gamma-ray bursts to deform the FRW cosmology, and it will be explicitly demonstrated that such a deformation removes the singularity in the FRW cosmology.
It is found that, when the coupling constants $alpha_p$ in the theory of regularized Lovelock gravity are properly chosen and the number of Lovelock tensors $prightarrow infty$, there exist a fairly large number of nonsingular (singularity free) black holes and nonsingular universes. Some nonsingular black holes have numerous horizons and numerous energy levels (a bit like atom) inside the outer event horizon. On the other hand, some nonsingular universes start and end in two de Sitter phases. The ratio of energy densities for the two phases are $120$ orders. It is thus helpful to understand the cosmological constant problem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا