Do you want to publish a course? Click here

A Gumbel-based activation function for imbalanced datasets

67   0   0.0 ( 0 )
 Added by Yuexin Wu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Rating prediction is a core problem in recommender systems to quantify users preferences towards different items. Due to the imbalanced rating distributions in training data, existing recommendation methods suffer from the biased prediction problem that generates biased prediction results. Thus, their performance on predicting ratings which rarely appear in training data is unsatisfactory. In this paper, inspired by the superior capability of Extreme Value Distribution (EVD)-based methods in modeling the distribution of rare data, we propose a novel underline{emph{G}}umbel Distribution-based underline{emph{R}}ating underline{emph{P}}rediction framework (GRP) which can accurately predict both frequent and rare ratings between users and items. In our approach, we first define different Gumbel distributions for each rating level, which can be learned by historical rating statistics of users and items. Second, we incorporate the Gumbel-based representations of users and items with their original representations learned from the rating matrix and/or reviews to enrich the representations of users and items via a proposed multi-scale convolutional fusion layer. Third, we propose a data-driven rating prediction module to predict the ratings of user-item pairs. Its worthy to note that our approach can be readily applied to existing recommendation methods for addressing their biased prediction problem. To verify the effectiveness of GRP, we conduct extensive experiments on eight benchmark datasets. Compared with several baseline models, the results show that: 1) GRP achieves state-of-the-art overall performance on all eight datasets; 2) GRP makes a substantial improvement in predicting rare ratings, which shows the effectiveness of our model in addressing the bias prediction problem.

rate research

Read More

The Synthetic Minority Oversampling TEchnique (SMOTE) is widely-used for the analysis of imbalanced datasets. It is known that SMOTE frequently over-generalizes the minority class, leading to misclassifications for the majority class, and effecting the overall balance of the model. In this article, we present an approach that overcomes this limitation of SMOTE, employing Localized Random Affine Shadowsampling (LoRAS) to oversample from an approximated data manifold of the minority class. We benchmarked our algorithm with 14 publicly available imbalanced datasets using three different Machine Learning (ML) algorithms and compared the performance of LoRAS, SMOTE and several SMOTE extensions that share the concept of using convex combinations of minority class data points for oversampling with LoRAS. We observed that LoRAS, on average generates better ML models in terms of F1-Score and Balanced accuracy. Another key observation is that while most of the extensions of SMOTE we have tested, improve the F1-Score with respect to SMOTE on an average, they compromise on the Balanced accuracy of a classification model. LoRAS on the contrary, improves both F1 Score and the Balanced accuracy thus produces better classification models. Moreover, to explain the success of the algorithm, we have constructed a mathematical framework to prove that LoRAS oversampling technique provides a better estimate for the mean of the underlying local data distribution of the minority class data space.
69 - Yang Gao , Yi-Fan Li , Yu Lin 2021
For many real-world classification problems, e.g., sentiment classification, most existing machine learning methods are biased towards the majority class when the Imbalance Ratio (IR) is high. To address this problem, we propose a set convolution (SetConv) operation and an episodic training strategy to extract a single representative for each class, so that classifiers can later be trained on a balanced class distribution. We prove that our proposed algorithm is permutation-invariant despite the order of inputs, and experiments on multiple large-scale benchmark text datasets show the superiority of our proposed framework when compared to other SOTA methods.
Over 85 oversampling algorithms, mostly extensions of the SMOTE algorithm, have been built over the past two decades, to solve the problem of imbalanced datasets. However, it has been evident from previous studies that different oversampling algorithms have different degrees of efficiency with different classifiers. With numerous algorithms available, it is difficult to decide on an oversampling algorithm for a chosen classifier. Here, we overcome this problem with a multi-schematic and classifier-independent oversampling approach: ProWRAS(Proximity Weighted Random Affine Shadowsampling). ProWRAS integrates the Localized Random Affine Shadowsampling (LoRAS)algorithm and the Proximity Weighted Synthetic oversampling (ProWSyn) algorithm. By controlling the variance of the synthetic samples, as well as a proximity-weighted clustering system of the minority classdata, the ProWRAS algorithm improves performance, compared to algorithms that generate synthetic samples through modelling high dimensional convex spaces of the minority class. ProWRAS has four oversampling schemes, each of which has its unique way to model the variance of the generated data. Most importantly, the performance of ProWRAS with proper choice of oversampling schemes, is independent of the classifier used. We have benchmarked our newly developed ProWRAS algorithm against five sate-of-the-art oversampling models and four different classifiers on 20 publicly available datasets. ProWRAS outperforms other oversampling algorithms in a statistically significant way, in terms of both F1-score and Kappa-score. Moreover, we have introduced a novel measure for classifier independence I-score, and showed quantitatively that ProWRAS performs better, independent of the classifier used. In practice, ProWRAS customizes synthetic sample generation according to a classifier of choice and thereby reduces benchmarking efforts.
Imbalanced datasets widely exist in practice and area great challenge for training deep neural models with agood generalization on infrequent classes. In this work, wepropose a new rare-class sample generator (RSG) to solvethis problem. RSG aims to generate some new samplesfor rare classes during training, and it has in particularthe following advantages: (1) it is convenient to use andhighly versatile, because it can be easily integrated intoany kind of convolutional neural network, and it works wellwhen combined with different loss functions, and (2) it isonly used during the training phase, and therefore, no ad-ditional burden is imposed on deep neural networks duringthe testing phase. In extensive experimental evaluations, weverify the effectiveness of RSG. Furthermore, by leveragingRSG, we obtain competitive results on Imbalanced CIFARand new state-of-the-art results on Places-LT, ImageNet-LT, and iNaturalist 2018. The source code is available at https://github.com/Jianf-Wang/RSG.
In recent years, benefiting from the expressive power of Graph Convolutional Networks (GCNs), significant breakthroughs have been made in face clustering. However, rare attention has been paid to GCN-based clustering on imbalanced data. Although imbalance problem has been extensively studied, the impact of imbalanced data on GCN-based linkage prediction task is quite different, which would cause problems in two aspects: imbalanced linkage labels and biased graph representations. The problem of imbalanced linkage labels is similar to that in image classification task, but the latter is a particular problem in GCN-based clustering via linkage prediction. Significantly biased graph representations in training can cause catastrophic overfitting of a GCN model. To tackle these problems, we evaluate the feasibility of those existing methods for imbalanced image classification problem on graphs with extensive experiments, and present a new method to alleviate the imbalanced labels and also augment graph representations using a Reverse-Imbalance Weighted Sampling (RIWS) strategy, followed with insightful analyses and discussions. The code and a series of imbalanced benchmark datasets synthesized from MS-Celeb-1M and DeepFashion are available on https://github.com/espectre/GCNs_on_imbalanced_datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا