Do you want to publish a course? Click here

Numerical Calabi-Yau metrics from holomorphic networks

70   0   0.0 ( 0 )
 Added by Michael R. Douglas
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We propose machine learning inspired methods for computing numerical Calabi-Yau (Ricci flat Kahler) metrics, and implement them using Tensorflow/Keras. We compare them with previous work, and find that they are far more accurate for manifolds with little or no symmetry. We also discuss issues such as overparameterization and choice of optimization methods.



rate research

Read More

Ricci flat metrics for Calabi-Yau threefolds are not known analytically. In this work, we employ techniques from machine learning to deduce numerical flat metrics for the Fermat quintic, for the Dwork quintic, and for the Tian-Yau manifold. This investigation employs a single neural network architecture that is capable of approximating Ricci flat Kaehler metrics for several Calabi-Yau manifolds of dimensions two and three. We show that measures that assess the Ricci flatness of the geometry decrease after training by three orders of magnitude. This is corroborated on the validation set, where the improvement is more modest. Finally, we demonstrate that discrete symmetries of manifolds can be learned in the process of learning the metric.
We develop methods to compute holomorphic Yukawa couplings for heterotic compactifications on complete intersection Calabi-Yau manifolds, generalising results of an earlier paper for Calabi-Yau hypersurfaces. Our methods are based on constructing the required bundle-valued forms explicitly and evaluating the relevant integrals over the projective ambient space. We also show how our approach relates to an earlier, algebraic one to calculate the holomorphic Yukawa couplings. A vanishing theorem, which we prove, implies that certain Yukawa couplings allowed by low-energy symmetries are zero due to topological reasons. To illustrate our methods, we calculate Yukawa couplings for SU(5)-based standard models on a co-dimension two complete intersection manifold.
We show how the smooth geometry of Calabi-Yau manifolds emerges from the thermodynamic limit of the statistical mechanical model of crystal melting defined in our previous paper arXiv:0811.2801. In particular, the thermodynamic partition function of molten crystals is shown to be equal to the classical limit of the partition function of the topological string theory by relating the Ronkin function of the characteristic polynomial of the crystal melting model to the holomorphic 3-form on the corresponding Calabi-Yau manifold.
144 - Martin Rocek , Neal Wadhwa 2004
We prove that a Kahler supermetric on a supermanifold with one complex fermionic dimension admits a super Ricci-flat supermetric if and only if the bosonic metric has vanishing scalar curvature. As a corollary, it follows that Yaus theorem does not hold for supermanifolds.
We study when Calabi-Yau supermanifolds M(1|2) with one complex bosonic coordinate and two complex fermionic coordinates are super Ricci-flat, and find that if the bosonic manifold is compact, it must have constant scalar curvature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا