Do you want to publish a course? Click here

Tailoring Superconducting Phases Observed in Hyperdoped Si:Ga for Cryogenic Circuit Applications

72   0   0.0 ( 0 )
 Added by Javad Shabani
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hyperdoping with gallium (Ga) has been established as a route to observe superconductivity in silicon (Si). The relatively large critical temperatures (T$_{rm c}$) and magnetic fields (B$_{rm c}$) make this phase attractive for cryogenic circuit applications, particularly for scalable hybrid superconductor--semiconductor platforms. However, the robustness of Si:Ga superconductivity at millikelvin temperatures is yet to be evaluated. Here, we report the presence of a reentrant resistive transition below T$_{rm c}$ for Si:Ga whose strength strongly depends on the distribution of the Ga clusters that precipitate in the implanted Si after annealing. By monitoring the reentrant resistance over a wide parameter space of implantation energies and fluences, we determine conditions that significantly improve the coherent coupling of Ga clusters, therefore, eliminating the reentrant transition even at temperatures as low as 20~mK.

rate research

Read More

236 - G. Ithier , E. Collin , P. Joyez 2005
Decoherence in quantum bit circuits is presently a major limitation to their use for quantum computing purposes. We present experiments, inspired from NMR, that characterise decoherence in a particular superconducting quantum bit circuit, the quantronium. We introduce a general framework for the analysis of decoherence, based on the spectral densities of the noise sources coupled to the qubit. Analysis of our measurements within this framework indicates a simple model for the noise sources acting on the qubit. We discuss various methods to fight decoherence.
Instantons, spacetime-localized quantum field tunneling events, are ubiquitous in correlated condensed matter and high energy systems. However, their direct observation through collisions with conventional particles has not been considered possible. We show how recent advances in circuit quantum electrodynamics, specifically, the realization of galvanic coupling of a transmon qubit to a high-impedance transmission line, allows the observation of inelastic collisions of single microwave photons with instantons (phase slips). We develop a formalism for calculating the photon-instanton cross section, which should be useful in other quantum field theoretical contexts. In particular, we show that the inelastic scattering probability can significantly exceed the effect of conventional Josephson quartic anharmonicity, and reach order-unity values.
We consider a superconducting quantum point contact in a circuit quantum electrodynamics setup. We study three different configurations, attainable with current technology, where a quantum point contact is coupled galvanically to a coplanar waveguide resonator. Furthermore, we demonstrate that the strong and ultrastrong coupling regimes can be achieved with realistic parameters, allowing the coherent exchange between a superconducting quantum point contact and a quantized intracavity field.
We present a simple nanodevice that can operate in two modes: i) three-state memory and ii) reading device. The nanodevice is fabricated with an array of ordered triangular-shaped nanomagnets embedded in a superconducting thin film. The input signal is ac current and the output signal is dc voltage. Vortex ratchet effect in combination with out of plane magnetic anisotropy of the nanomagnets is the background physics which governs the nanodevice performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا