Do you want to publish a course? Click here

Electric current noise in mesoscopic organic semiconductors

147   0   0.0 ( 0 )
 Added by Dmitry Smirnov S
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate that nuclear spin fluctuations lead to the electric current noise in the mesoscopic samples of organic semiconductors showing the pronounced magnetoresistance in weak fields. For the bipolaron and electron-hole mechanisms of organic magnetoresistance, the current noise spectrum consists of the high frequency peak related to the nuclear spin precession in the Knight field of the charge carriers and the low frequency peak related to the nuclear spin relaxation. The shape of the spectrum depends on the external magnetic and radiofrequency fields, which allows one to prove the role of nuclei in magnetoresistance experimentally.



rate research

Read More

In organic light emitting diodes with small area the current may be dominated by a finite number, N of sites in which the electron-hole recombination occurs. As a result, averaging over the hyperfine magnetic fields, b_h, that are generated in these sites by the environment nuclei is incomplete. This creates a random (mesoscopic) current component, {Delta}I(B), at field B having relative magnitude ~ N^(-1/2). To quantify the statistical properties of {Delta}I(B) we calculate the correlator K(B, {Delta}B)= <{delta}I(B - {Delta}B/2){delta}I(B + {Delta}B/2)> for parallel and perpendicular orientations of {Delta}B. We demonstrate that mesoscopic fluctuations develop at fields B>>b_h, where the average magnetoresistance is near saturation. These fluctuations originate from the slow beating between S and T_0 states of the recombining e-h spin pair-partners. We identify the most relevant processes responsible for the current fluctuations as due to anomalously slow beatings that develop in sparse e-h polaron pairs at sites for which the b_h projections on the external field direction almost coincide.
Superconducting wires with broken time-reversal and spin-rotational symmetries can exhibit two distinct topological gapped phases and host bound Majorana states at the phase boundaries. When the wire is tuned to the transition between these two phases and the gap is closed, Majorana states become delocalized leading to a peculiar critical state of the system. We study transport properties of this critical state as a function of the length $L$ of a disordered multichannel wire. Applying a non-linear supersymmetric sigma model of symmetry class D with two replicas, we identify the average conductance, its variance and the third cumulant in the whole range of $L$ from the Ohmic limit of short wires to the regime of a broad conductance distribution when $L$ exceeds the correlation length of the system. In addition, we calculate the average shot noise power and variance of the topological index for arbitrary $L$. The general approach developed in the paper can also be applied to study combined effects of disorder and topology in wires of other symmetries.
Using analytical arguments and computer simulations we show that the dependence of the hopping carrier mobility on the electric field $mu(F)/mu(0)$ in a system of random sites is determined by the localization length $a$, and not by the concentration of sites $N$. This result is in drastic contrast to what is usually assumed in the literature for a theoretical description of experimental data and for device modeling, where $N^{-1/3}$ is considered as the decisive length scale for $mu(F)$. We show that although the limiting value $mu(F rightarrow 0)$ is determined by the ratio $N^{-1/3}/a$, the dependence $mu(F)/mu(0)$ is sensitive to the magnitude of $a$, and not to $N^{-1/3}$. Furthermore, our numerical and analytical results prove that the effective temperature responsible for the combined effect of the electric field $F$ and the real temperature $T$ on the hopping transport via spatially random sites can contain the electric field only in the combination $eFa$.
99 - Yao Yao 2019
Different from traditional semiconductors, the organic semiconductors normally possess moderate many-body interactions with respect to charge, exciton, spin and phonons. In particular, the diagonal electron-phonon couplings give rise to the spatial localization and the off-diagonal couplings refer to the delocalization. With the competition between them, the electrons are dispersive in a finite extent and unfavorable towards thermal equilibrium. In this context, the quantities from the statistical mechanics such as the entropy have to be reexamined. In order to bridge the localization-delocalization duality and the device performance in organic semiconductors, the quantum heat engine model is employed to describe the charge, exciton and spin dynamics. We adopt the adaptive time-dependent density matrix renormalization group algorithm to calculate the time evolution of the out-of-time-ordered correlator (OTOC), a quantum dynamic measurement of the entanglement entropy, in three models with two kinds of competing many-body interactions: two-bath lattice model with a single electron, Frenkel-charge transfer mixed model, and the Merrifield model for singlet fission. We respectively investigate the parameter regime that the system is in the many-body localization (MBL) phase indicated by the behavior of OTOC. It is recognized that the novel effects of coherent electron hopping, the ultrafast charge separation and the dissociation of triplet pairs are closely related to the MBL effect. Our investigation unifies the intrinsic mechanisms correlating to charge, exciton and spin into a single framework of quantum entanglement entropy, which may help clarify the complicated and diverse phenomena in organic semiconductors.
We propose an extension of the Landauer-Buttiker scattering theory to include effects of interaction in the active region of a mesoscopic conductor structure. The current expression obtained coincides with those derived by different methods. A new general expression for the noise is also established. These expressions are then discussed in the case of strongly sequential tunneling through a double-barrier resonant tunneling structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا