Do you want to publish a course? Click here

Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

92   0   0.0 ( 0 )
 Added by Xiachong Feng
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Meeting summarization is a challenging task due to its dynamic interaction nature among multiple speakers and lack of sufficient training data. Existing methods view the meeting as a linear sequence of utterances while ignoring the diverse relations between each utterance. Besides, the limited labeled data further hinders the ability of data-hungry neural models. In this paper, we try to mitigate the above challenges by introducing dialogue-discourse relations. First, we present a Dialogue Discourse-Dware Meeting Summarizer (DDAMS) to explicitly model the interaction between utterances in a meeting by modeling different discourse relations. The core module is a relational graph encoder, where the utterances and discourse relations are modeled in a graph interaction manner. Moreover, we devise a Dialogue Discourse-Aware Data Augmentation (DDADA) strategy to construct a pseudo-summarization corpus from existing input meetings, which is 20 times larger than the original dataset and can be used to pretrain DDAMS. Experimental results on AMI and ICSI meeting datasets show that our full system can achieve SOTA performance. Our codes will be available at: https://github.com/xcfcode/DDAMS.



rate research

Read More

122 - Jiaqi Li , Ming Liu , Zihao Zheng 2021
Multiparty Dialogue Machine Reading Comprehension (MRC) differs from traditional MRC as models must handle the complex dialogue discourse structure, previously unconsidered in traditional MRC. To fully exploit such discourse structure in multiparty dialogue, we present a discourse-aware dialogue graph neural network, DADgraph, which explicitly constructs the dialogue graph using discourse dependency links and discourse relations. To validate our model, we perform experiments on the Molweni corpus, a large-scale MRC dataset built over multiparty dialogue annotated with discourse structure. Experiments on Molweni show that our discourse-aware model achieves statistically significant improvements compared against strong neural network MRC baselines.
Summarizing conversations via neural approaches has been gaining research traction lately, yet it is still challenging to obtain practical solutions. Examples of such challenges include unstructured information exchange in dialogues, informal interactions between speakers, and dynamic role changes of speakers as the dialogue evolves. Many of such challenges result in complex coreference links. Therefore, in this work, we investigate different approaches to explicitly incorporate coreference information in neural abstractive dialogue summarization models to tackle the aforementioned challenges. Experimental results show that the proposed approaches achieve state-of-the-art performance, implying it is useful to utilize coreference information in dialogue summarization. Evaluation results on factual correctness suggest such coreference-aware models are better at tracing the information flow among interlocutors and associating accurate status/actions with the corresponding interlocutors and person mentions.
Dialogue summarization is a challenging problem due to the informal and unstructured nature of conversational data. Recent advances in abstractive summarization have been focused on data-hungry neural models and adapting these models to a new domain requires the availability of domain-specific manually annotated corpus created by linguistic experts. We propose a zero-shot abstractive dialogue summarization method that uses discourse relations to provide structure to conversations, and then uses an out-of-the-box document summarization model to create final summaries. Experiments on the AMI and ICSI meeting corpus, with document summarization models like PGN and BART, shows that our method improves the ROGUE score by up to 3 points, and even performs competitively against other state-of-the-art methods.
Unlike well-structured text, such as news reports and encyclopedia articles, dialogue content often comes from two or more interlocutors, exchanging information with each other. In such a scenario, the topic of a conversation can vary upon progression and the key information for a certain topic is often scattered across multiple utterances of different speakers, which poses challenges to abstractly summarize dialogues. To capture the various topic information of a conversation and outline salient facts for the captured topics, this work proposes two topic-aware contrastive learning objectives, namely coherence detection and sub-summary generation objectives, which are expected to implicitly model the topic change and handle information scattering challenges for the dialogue summarization task. The proposed contrastive objectives are framed as auxiliary tasks for the primary dialogue summarization task, united via an alternative parameter updating strategy. Extensive experiments on benchmark datasets demonstrate that the proposed simple method significantly outperforms strong baselines and achieves new state-of-the-art performance. The code and trained models are publicly available via href{https://github.com/Junpliu/ConDigSum}{https://github.com/Junpliu/ConDigSum}.
87 - Jiaao Chen , Diyi Yang 2021
Abstractive conversation summarization has received much attention recently. However, these generated summaries often suffer from insufficient, redundant, or incorrect content, largely due to the unstructured and complex characteristics of human-human interactions. To this end, we propose to explicitly model the rich structures in conversations for more precise and accurate conversation summarization, by first incorporating discourse relations between utterances and action triples (who-doing-what) in utterances through structured graphs to better encode conversations, and then designing a multi-granularity decoder to generate summaries by combining all levels of information. Experiments show that our proposed models outperform state-of-the-art methods and generalize well in other domains in terms of both automatic evaluations and human judgments. We have publicly released our code at https://github.com/GT-SALT/Structure-Aware-BART.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا