Do you want to publish a course? Click here

TP-TIO: A Robust Thermal-Inertial Odometry with Deep ThermalPoint

100   0   0.0 ( 0 )
 Added by Shibo Zhao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

To achieve robust motion estimation in visually degraded environments, thermal odometry has been an attraction in the robotics community. However, most thermal odometry methods are purely based on classical feature extractors, which is difficult to establish robust correspondences in successive frames due to sudden photometric changes and large thermal noise. To solve this problem, we propose ThermalPoint, a lightweight feature detection network specifically tailored for producing keypoints on thermal images, providing notable anti-noise improvements compared with other state-of-the-art methods. After that, we combine ThermalPoint with a novel radiometric feature tracking method, which directly makes use of full radiometric data and establishes reliable correspondences between sequential frames. Finally, taking advantage of an optimization-based visual-inertial framework, a deep feature-based thermal-inertial odometry (TP-TIO) framework is proposed and evaluated thoroughly in various visually degraded environments. Experiments show that our method outperforms state-of-the-art visual and laser odometry methods in smoke-filled environments and achieves competitive accuracy in normal environments.

rate research

Read More

Visual odometry shows excellent performance in a wide range of environments. However, in visually-denied scenarios (e.g. heavy smoke or darkness), pose estimates degrade or even fail. Thermal cameras are commonly used for perception and inspection when the environment has low visibility. However, their use in odometry estimation is hampered by the lack of robust visual features. In part, this is as a result of the sensor measuring the ambient temperature profile rather than scene appearance and geometry. To overcome this issue, we propose a Deep Neural Network model for thermal-inertial odometry (DeepTIO) by incorporating a visual hallucination network to provide the thermal network with complementary information. The hallucination network is taught to predict fake visual features from thermal images by using Huber loss. We also employ selective fusion to attentively fuse the features from three different modalities, i.e thermal, hallucination, and inertial features. Extensive experiments are performed in hand-held and mobile robot data in benign and smoke-filled environments, showing the efficacy of the proposed model.
Advances in micro-electro-mechanical (MEMS) techniques enable inertial measurements units (IMUs) to be small, cheap, energy efficient, and widely used in smartphones, robots, and drones. Exploiting inertial data for accurate and reliable navigation and localization has attracted significant research and industrial interest, as IMU measurements are completely ego-centric and generally environment agnostic. Recent studies have shown that the notorious issue of drift can be significantly alleviated by using deep neural networks (DNNs), e.g. IONet. However, the lack of sufficient labelled data for training and testing various architectures limits the proliferation of adopting DNNs in IMU-based tasks. In this paper, we propose and release the Oxford Inertial Odometry Dataset (OxIOD), a first-of-its-kind data collection for inertial-odometry research, with all sequences having ground-truth labels. Our dataset contains 158 sequences totalling more than 42 km in total distance, much larger than previous inertial datasets. Another notable feature of this dataset lies in its diversity, which can reflect the complex motions of phone-based IMUs in various everyday usage. The measurements were collected with four different attachments (handheld, in the pocket, in the handbag and on the trolley), four motion modes (halting, walking slowly, walking normally, and running), five different users, four types of off-the-shelf consumer phones, and large-scale localization from office buildings. Deep inertial tracking experiments were conducted to show the effectiveness of our dataset in training deep neural network models and evaluate learning-based and model-based algorithms. The OxIOD Dataset is available at: http://deepio.cs.ox.ac.uk
In this paper, we propose a novel laser-inertial odometry and mapping method to achieve real-time, low-drift and robust pose estimation in large-scale highway environments. The proposed method is mainly composed of four sequential modules, namely scan pre-processing module, dynamic object detection module, laser-inertial odometry module and laser mapping module. Scan pre-processing module uses inertial measurements to compensate the motion distortion of each laser scan. Then, the dynamic object detection module is used to detect and remove dynamic objects from each laser scan by applying CNN segmentation network. After obtaining the undistorted point cloud without moving objects, the laser inertial odometry module uses an Error State Kalman Filter to fuse the data of laser and IMU and output the coarse pose estimation at high frequency. Finally, the laser mapping module performs a fine processing step and the Frame-to-Model scan matching strategy is used to create a static global map. We compare the performance of our method with two state-ofthe-art methods, LOAM and SuMa, using KITTI dataset and real highway scene dataset. Experiment results show that our method performs better than the state-of-the-art methods in real highway environments and achieves competitive accuracy on the KITTI dataset.
Autonomous exploration of unknown environments with aerial vehicles remains a challenge, especially in perceptually degraded conditions. Dust, fog, or a lack of visual or LiDAR-based features results in severe difficulties for state estimation algorithms, which failure can be catastrophic. In this work, we show that it is indeed possible to navigate in such conditions without any exteroceptive sensing by exploiting collisions instead of treating them as constraints. To this end, we present a novel contact-based inertial odometry (CIO) algorithm: it uses estimated external forces with the environment to detect collisions and generate pseudo-measurements of the robot velocity, enabling autonomous flight. To fully exploit this method, we first perform modeling of a hybrid ground and aerial vehicle which can withstand collisions at moderate speeds, for which we develop an external wrench estimation algorithm. Then, we present our CIO algorithm and develop a reactive planner and control law which encourage exploration by bouncing off obstacles. All components of this framework are validated in hardware experiments and we demonstrate that a quadrotor can traverse a cluttered environment using an IMU only. This work can be used on drones to recover from visual inertial odometry failure or on micro-drones that do not have the payload capacity to carry cameras, LiDARs or powerful computers.
180 - Yiming Tu , Jin Xie 2021
Extensive research efforts have been dedicated to deep learning based odometry. Nonetheless, few efforts are made on the unsupervised deep lidar odometry. In this paper, we design a novel framework for unsupervised lidar odometry with the IMU, which is never used in other deep methods. First, a pair of siamese LSTMs are used to obtain the initial pose from the linear acceleration and angular velocity of IMU. With the initial pose, we perform the rigid transform on the current frame and align it closer to the last frame. Then, we extract vertex and normal features from the transformed point clouds and its normals. Next a two-branches attention modules are proposed to estimate residual rotation and translation from the extracted vertex and normal features, respectively. Finally, our model outputs the sum of initial and residual poses as the final pose. For unsupervised training, we introduce an unsupervised loss function which is employed on the voxelized point clouds. The proposed approach is evaluated on the KITTI odometry estimation benchmark and achieves comparable performances against other state-of-the-art methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا