No Arabic abstract
Spin and orbital angular momentum of light plays a central role in quantum nanophotonics as well as topological electrodynamics. Here, we show that the thermal radiation from finite-sized bodies comprising of nonreciprocal magneto-optical materials can exert a spin torque even in global thermal equilibrium. Moving beyond the paradigm of near-field heat transfer, we calculate near-field radiative angular momentum transfer between finite-sized nonreciprocal objects by combining Rytovs fluctuational electrodynamics with the theory of optical angular momentum. We prove that a single magneto-optical cubic particle in non-equilibrium with its surroundings experiences a torque in the presence of an applied magnetic field (T-symmetry breaking). Furthermore, even in global thermal equilibrium, two particles with misaligned gyrotropic axes experience equal magnitude torques with opposite signs which tend to align their gyrotropic axes parallel to each other. Our results are universally applicable to semiconductors like InSb (magneto-plasmas) as well as Weyl semi-metals which exhibit the anomalous Hall effect (gyrotropy) at infrared frequencies. Our work paves the way towards near-field angular momentum transfer mediated by thermal fluctuations for nanoscale devices.
Energy can be transferred in a radiative manner between objects with different electrical fluctuations. In this work, we consider near-field energy transfer between two separated parallel plates: one is graphene-covered boron nitride and the other a magneto-optic medium. We first study the energy transfer between the two plates having the same temperature. An electric current through the graphene gives rise to nonequilibrium fluctuations and induces the energy transfer. Both the magnitude and direction of the energy flux can be controlled by the electric current and an in-plane magnetic field in the magneto-optic medium. This is due to the interplay between nonreciprocal effective photonic temperature in graphene and nonreciprocal surface modes in the magneto-optic plate. Furthermore, we report that a tunable thermoelectric current can be generated in the graphene in the presence of a temperature difference between the two plates.
We demonstrate in this work that the use of metasurfaces provides a viable strategy to largely tune and enhance near-field radiative heat transfer between extended structures. In particular, using a rigorous coupled wave analysis, we predict that Si-based metasurfaces featuring two-dimensional periodic arrays of holes can exhibit a room-temperature near-field radiative heat conductance much larger than any unstructured material to date. We show that this enhancement, which takes place in a broad range of separations, relies on the possibility to largely tune the properties of the surface plasmon polaritons that dominate the radiative heat transfer in the near-field regime.
Understanding the momentum of light when propagating through optical media is not only fundamental for studies as varied as classical electrodynamics and polaritonics in condensed matter physics, but also for important applications such as optical-force manipulations and photovoltaics. From a microscopic perspective, an optical medium is in fact a complex system that can split the light momentum into the electromagnetic field, as well as the material electrons and the ionic lattice. Here, we disentangle the partition of momentum associated with light propagation in optical media, and develop a quantum theory to explicitly calculate its distribution. The material momentum here revealed, which is distributed among electrons and ionic lattice, leads to the prediction of unexpected phenomena. In particular, the electron momentum manifests through an intrinsic DC current, and strikingly, we find that under certain conditions this current can be along the photonic wave vector, implying an optical pulling effect on the electrons. Likewise, an optical pulling effect on the lattice can also be observed, such as in graphene during plasmon propagation. We also predict the emergence of boundary electric dipoles associated with light transmission through finite media, offering a microscopic explanation of optical pressure on material boundaries.
In this work, we study the near-field radiative heat transfer between two suspended sheets of anisotropic 2D materials. It is found that the radiative heat transfer can be enhanced with orders-of-magnitude over the blackbody limit for nanoscale separation. The enhancement is attributed to the excitation of anisotropic and hyperbolic plasmonic modes. Meanwhile, a large thermal modulation effect, depending on the twisted angle of principal axes between the upper and bottom sheets of anisotropic 2D materials, is revealed. The near-field radiative heat transfer for different concentrations of electron is demonstrated and the role of hyperbolic plasmonic modes is analyzed. Our finding of radiative heat transfer between anisotropic 2D materials may find promising applications in thermal nano-devices, such as non-contact thermal modulators, thermal lithography, thermos-photovoltaics, etc.
We introduce the continuity equation for the electromagnetic spin angular momentum (SAM) in matter and discuss the torque associated with the SAM transfer in terms of effective spin forces acting in a material. In plasmonic metal, these spin forces result in plasmogalvanic phenomenon which is pinning the plasmon-induced electromotive force to atomically-thin layer at the metal interface.