Do you want to publish a course? Click here

Ultrasound Scatterer Density Classification Using Convolutional Neural Networks by Exploiting Patch Statistics

334   0   0.0 ( 0 )
 Added by Ali K. Z. Tehrani
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Quantitative ultrasound (QUS) can reveal crucial information on tissue properties such as scatterer density. If the scatterer density per resolution cell is above or below 10, the tissue is considered as fully developed speckle (FDS) or low-density scatterers (LDS), respectively. Conventionally, the scatterer density has been classified using estimated statistical parameters of the amplitude of backscattered echoes. However, if the patch size is small, the estimation is not accurate. These parameters are also highly dependent on imaging settings. In this paper, we propose a convolutional neural network (CNN) architecture for QUS, and train it using simulation data. We further improve the network performance by utilizing patch statistics as additional input channels. We evaluate the network using simulation data, experimental phantoms and in vivo data. We also compare our proposed network with different classic and deep learning models, and demonstrate its superior performance in classification of tissues with different scatterer density values. The results also show that the proposed network is able to work with different imaging parameters with no need for a reference phantom. This work demonstrates the potential of CNNs in classifying scatterer density in ultrasound images.



rate research

Read More

Colorectal cancer is the third most common cancer-related death after lung cancer and breast cancer worldwide. The risk of developing colorectal cancer could be reduced by early diagnosis of polyps during a colonoscopy. Computer-aided diagnosis systems have the potential to be applied for polyp screening and reduce the number of missing polyps. In this paper, we compare the performance of different deep learning architectures as feature extractors, i.e. ResNet, DenseNet, InceptionV3, InceptionResNetV2 and SE-ResNeXt in the encoder part of a U-Net architecture. We validated the performance of presented ensemble models on the CVC-Clinic (GIANA 2018) dataset. The DenseNet169 feature extractor combined with U-Net architecture outperformed the other counterparts and achieved an accuracy of 99.15%, Dice similarity coefficient of 90.87%, and Jaccard index of 83.82%.
To improve the performance of most neuroimiage analysis pipelines, brain extraction is used as a fundamental first step in the image processing. But in the case of fetal brain development, there is a need for a reliable US-specific tool. In this work we propose a fully automated 3D CNN approach to fetal brain extraction from 3D US clinical volumes with minimal preprocessing. Our method accurately and reliably extracts the brain regardless of the large data variation inherent in this imaging modality. It also performs consistently throughout a gestational age range between 14 and 31 weeks, regardless of the pose variation of the subject, the scale, and even partial feature-obstruction in the image, outperforming all current alternatives.
128 - Makena Low , Priyanka Raina 2019
For several skin conditions such as vitiligo, accurate segmentation of lesions from skin images is the primary measure of disease progression and severity. Existing methods for vitiligo lesion segmentation require manual intervention. Unfortunately, manual segmentation is time and labor-intensive, as well as irreproducible between physicians. We introduce a convolutional neural network (CNN) that quickly and robustly performs vitiligo skin lesion segmentation. Our CNN has a U-Net architecture with a modified contracting path. We use the CNN to generate an initial segmentation of the lesion, then refine it by running the watershed algorithm on high-confidence pixels. We train the network on 247 images with a variety of lesion sizes, complexity, and anatomical sites. The network with our modifications noticeably outperforms the state-of-the-art U-Net, with a Jaccard Index (JI) score of 73.6% (compared to 36.7%). Moreover, our method requires only a few seconds for segmentation, in contrast with the previously proposed semi-autonomous watershed approach, which requires 2-29 minutes per image.
A cascaded multi-planar scheme with a modified residual U-Net architecture was used to segment thalamic nuclei on conventional and white-matter-nulled (WMn) magnetization prepared rapid gradient echo (MPRAGE) data. A single network was optimized to work with images from healthy controls and patients with multiple sclerosis (MS) and essential tremor (ET), acquired at both 3T and 7T field strengths. Dice similarity coefficient and volume similarity index (VSI) were used to evaluate performance. Clinical utility was demonstrated by applying this method to study the effect of MS on thalamic nuclei atrophy. Segmentation of each thalamus into twelve nuclei was achieved in under a minute. For 7T WMn-MPRAGE, the proposed method outperforms current state-of-the-art on patients with ET with statistically significant improvements in Dice for five nuclei (increase in the range of 0.05-0.18) and VSI for four nuclei (increase in the range of 0.05-0.19), while performing comparably for healthy and MS subjects. Dice and VSI achieved using 7T WMn-MPRAGE data are comparable to those using 3T WMn-MPRAGE data. For conventional MPRAGE, the proposed method shows a statistically significant Dice improvement in the range of 0.14-0.63 over FreeSurfer for all nuclei and disease types. Effect of noise on network performance shows robustness to images with SNR as low as half the baseline SNR. Atrophy of four thalamic nuclei and whole thalamus was observed for MS patients compared to healthy control subjects, after controlling for the effect of parallel imaging, intracranial volume, gender, and age (p<0.004). The proposed segmentation method is fast, accurate, performs well across disease types and field strengths, and shows great potential for improving our understanding of thalamic nuclei involvement in neurological diseases.
Convolutional Neural Networks (CNNs) have recently become a favored technique for image denoising due to its adaptive learning ability, especially with a deep configuration. However, their efficacy is inherently limited owing to their homogenous network formation with the unique use of linear convolution. In this study, we propose a heterogeneous network model which allows greater flexibility for embedding additional non-linearity at the core of the data transformation. To this end, we propose the idea of an operational neuron or Operational Neural Networks (ONN), which enables a flexible non-linear and heterogeneous configuration employing both inter and intra-layer neuronal diversity. Furthermore, we propose a robust operator search strategy inspired by the Hebbian theory, called the Synaptic Plasticity Monitoring (SPM) which can make data-driven choices for non-linearities in any architecture. An extensive set of comparative evaluations of ONNs and CNNs over two severe image denoising problems yield conclusive evidence that ONNs enriched by non-linear operators can achieve a superior denoising performance against CNNs with both equivalent and well-known deep configurations.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا