Do you want to publish a course? Click here

Practical No-box Adversarial Attacks against DNNs

348   0   0.0 ( 0 )
 Added by Qizhang Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The study of adversarial vulnerabilities of deep neural networks (DNNs) has progressed rapidly. Existing attacks require either internal access (to the architecture, parameters, or training set of the victim model) or external access (to query the model). However, both the access may be infeasible or expensive in many scenarios. We investigate no-box adversarial examples, where the attacker can neither access the model information or the training set nor query the model. Instead, the attacker can only gather a small number of examples from the same problem domain as that of the victim model. Such a stronger threat model greatly expands the applicability of adversarial attacks. We propose three mechanisms for training with a very small dataset (on the order of tens of examples) and find that prototypical reconstruction is the most effective. Our experiments show that adversarial examples crafted on prototypical auto-encoding models transfer well to a variety of image classification and face verification models. On a commercial celebrity recognition system held by clarifai.com, our approach significantly diminishes the average prediction accuracy of the system to only 15.40%, which is on par with the attack that transfers adversarial examples from a pre-trained Arcface model.



rate research

Read More

152 - Ali Borji 2020
Humans rely heavily on shape information to recognize objects. Conversely, convolutional neural networks (CNNs) are biased more towards texture. This is perhaps the main reason why CNNs are vulnerable to adversarial examples. Here, we explore how shape bias can be incorporated into CNNs to improve their robustness. Two algorithms are proposed, based on the observation that edges are invariant to moderate imperceptible perturbations. In the first one, a classifier is adversarially trained on images with the edge map as an additional channel. At inference time, the edge map is recomputed and concatenated to the image. In the second algorithm, a conditional GAN is trained to translate the edge maps, from clean and/or perturbed images, into clean images. Inference is done over the generated image corresponding to the inputs edge map. Extensive experiments over 10 datasets demonstrate the effectiveness of the proposed algorithms against FGSM and $ell_infty$ PGD-40 attacks. Further, we show that a) edge information can also benefit other adversarial training methods, and b) CNNs trained on edge-augmented inputs are more robust against natural image corruptions such as motion blur, impulse noise and JPEG compression, than CNNs trained solely on RGB images. From a broader perspective, our study suggests that CNNs do not adequately account for image structures that are crucial for robustness. Code is available at:~url{https://github.com/aliborji/Shapedefence.git}.
The field of computer vision has witnessed phenomenal progress in recent years partially due to the development of deep convolutional neural networks. However, deep learning models are notoriously sensitive to adversarial examples which are synthesized by adding quasi-perceptible noises on real images. Some existing defense methods require to re-train attacked target networks and augment the train set via known adversarial attacks, which is inefficient and might be unpromising with unknown attack types. To overcome the above issues, we propose a portable defense method, online alternate generator, which does not need to access or modify the parameters of the target networks. The proposed method works by online synthesizing another image from scratch for an input image, instead of removing or destroying adversarial noises. To avoid pretrained parameters exploited by attackers, we alternately update the generator and the synthesized image at the inference stage. Experimental results demonstrate that the proposed defensive scheme and method outperforms a series of state-of-the-art defending models against gray-box adversarial attacks.
Image classifiers based on deep neural networks suffer from harassment caused by adversarial examples. Two defects exist in black-box iterative attacks that generate adversarial examples by incrementally adjusting the noise-adding direction for each step. On the one hand, existing iterative attacks add noises monotonically along the direction of gradient ascent, resulting in a lack of diversity and adaptability of the generated iterative trajectories. On the other hand, it is trivial to perform adversarial attack by adding excessive noises, but currently there is no refinement mechanism to squeeze redundant noises. In this work, we propose Curls & Whey black-box attack to fix the above two defects. During Curls iteration, by combining gradient ascent and descent, we `curl up iterative trajectories to integrate more diversity and transferability into adversarial examples. Curls iteration also alleviates the diminishing marginal effect in existing iterative attacks. The Whey optimization further squeezes the `whey of noises by exploiting the robustness of adversarial perturbation. Extensive experiments on Imagenet and Tiny-Imagenet demonstrate that our approach achieves impressive decrease on noise magnitude in l2 norm. Curls & Whey attack also shows promising transferability against ensemble models as well as adversarially trained models. In addition, we extend our attack to the targeted misclassification, effectively reducing the difficulty of targeted attacks under black-box condition.
Deep neural networks (DNNs) have demonstrated impressive performance on many challenging machine learning tasks. However, DNNs are vulnerable to adversarial inputs generated by adding maliciously crafted perturbations to the benign inputs. As a growing number of attacks have been reported to generate adversarial inputs of varying sophistication, the defense-attack arms race has been accelerated. In this paper, we present MODEF, a cross-layer model diversity ensemble framework. MODEF intelligently combines unsupervised model denoising ensemble with supervised model verification ensemble by quantifying model diversity, aiming to boost the robustness of the target model against adversarial examples. Evaluated using eleven representative attacks on popular benchmark datasets, we show that MODEF achieves remarkable defense success rates, compared with existing defense methods, and provides a superior capability of repairing adversarial inputs and making correct predictions with high accuracy in the presence of black-box attacks.
Despite the high quality performance of the deep neural network in real-world applications, they are susceptible to minor perturbations of adversarial attacks. This is mostly undetectable to human vision. The impact of such attacks has become extremely detrimental in autonomous vehicles with real-time safety concerns. The black-box adversarial attacks cause drastic misclassification in critical scene elements such as road signs and traffic lights leading the autonomous vehicle to crash into other vehicles or pedestrians. In this paper, we propose a novel query-based attack method called Modified Simple black-box attack (M-SimBA) to overcome the use of a white-box source in transfer based attack method. Also, the issue of late convergence in a Simple black-box attack (SimBA) is addressed by minimizing the loss of the most confused class which is the incorrect class predicted by the model with the highest probability, instead of trying to maximize the loss of the correct class. We evaluate the performance of the proposed approach to the German Traffic Sign Recognition Benchmark (GTSRB) dataset. We show that the proposed model outperforms the existing models like Transfer-based projected gradient descent (T-PGD), SimBA in terms of convergence time, flattening the distribution of confused class probability, and producing adversarial samples with least confidence on the true class.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا