Do you want to publish a course? Click here

Black-box Adversarial Attacks in Autonomous Vehicle Technology

66   0   0.0 ( 0 )
 Added by K Naveen Kumar
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Despite the high quality performance of the deep neural network in real-world applications, they are susceptible to minor perturbations of adversarial attacks. This is mostly undetectable to human vision. The impact of such attacks has become extremely detrimental in autonomous vehicles with real-time safety concerns. The black-box adversarial attacks cause drastic misclassification in critical scene elements such as road signs and traffic lights leading the autonomous vehicle to crash into other vehicles or pedestrians. In this paper, we propose a novel query-based attack method called Modified Simple black-box attack (M-SimBA) to overcome the use of a white-box source in transfer based attack method. Also, the issue of late convergence in a Simple black-box attack (SimBA) is addressed by minimizing the loss of the most confused class which is the incorrect class predicted by the model with the highest probability, instead of trying to maximize the loss of the correct class. We evaluate the performance of the proposed approach to the German Traffic Sign Recognition Benchmark (GTSRB) dataset. We show that the proposed model outperforms the existing models like Transfer-based projected gradient descent (T-PGD), SimBA in terms of convergence time, flattening the distribution of confused class probability, and producing adversarial samples with least confidence on the true class.



rate research

Read More

Image classifiers based on deep neural networks suffer from harassment caused by adversarial examples. Two defects exist in black-box iterative attacks that generate adversarial examples by incrementally adjusting the noise-adding direction for each step. On the one hand, existing iterative attacks add noises monotonically along the direction of gradient ascent, resulting in a lack of diversity and adaptability of the generated iterative trajectories. On the other hand, it is trivial to perform adversarial attack by adding excessive noises, but currently there is no refinement mechanism to squeeze redundant noises. In this work, we propose Curls & Whey black-box attack to fix the above two defects. During Curls iteration, by combining gradient ascent and descent, we `curl up iterative trajectories to integrate more diversity and transferability into adversarial examples. Curls iteration also alleviates the diminishing marginal effect in existing iterative attacks. The Whey optimization further squeezes the `whey of noises by exploiting the robustness of adversarial perturbation. Extensive experiments on Imagenet and Tiny-Imagenet demonstrate that our approach achieves impressive decrease on noise magnitude in l2 norm. Curls & Whey attack also shows promising transferability against ensemble models as well as adversarially trained models. In addition, we extend our attack to the targeted misclassification, effectively reducing the difficulty of targeted attacks under black-box condition.
We study the problem of attacking video recognition models in the black-box setting, where the model information is unknown and the adversary can only make queries to detect the predicted top-1 class and its probability. Compared with the black-box attack on images, attacking videos is more challenging as the computation cost for searching the adversarial perturbations on a video is much higher due to its high dimensionality. To overcome this challenge, we propose a heuristic black-box attack model that generates adversarial perturbations only on the selected frames and regions. More specifically, a heuristic-based algorithm is proposed to measure the importance of each frame in the video towards generating the adversarial examples. Based on the frames importance, the proposed algorithm heuristically searches a subset of frames where the generated adversarial example has strong adversarial attack ability while keeps the perturbations lower than the given bound. Besides, to further boost the attack efficiency, we propose to generate the perturbations only on the salient regions of the selected frames. In this way, the generated perturbations are sparse in both temporal and spatial domains. Experimental results of attacking two mainstream video recognition methods on the UCF-101 dataset and the HMDB-51 dataset demonstrate that the proposed heuristic black-box adversarial attack method can significantly reduce the computation cost and lead to more than 28% reduction in query numbers for the untargeted attack on both datasets.
Adversarial examples are known as carefully perturbed images fooling image classifiers. We propose a geometric framework to generate adversarial examples in one of the most challenging black-box settings where the adversary can only generate a small number of queries, each of them returning the top-$1$ label of the classifier. Our framework is based on the observation that the decision boundary of deep networks usually has a small mean curvature in the vicinity of data samples. We propose an effective iterative algorithm to generate query-efficient black-box perturbations with small $ell_p$ norms for $p ge 1$, which is confirmed via experimental evaluations on state-of-the-art natural image classifiers. Moreover, for $p=2$, we theoretically show that our algorithm actually converges to the minimal $ell_2$-perturbation when the curvature of the decision boundary is bounded. We also obtain the optimal distribution of the queries over the iterations of the algorithm. Finally, experimental results confirm that our principled black-box attack algorithm performs better than state-of-the-art algorithms as it generates smaller perturbations with a reduced number of queries.
Face recognition has obtained remarkable progress in recent years due to the great improvement of deep convolutional neural networks (CNNs). However, deep CNNs are vulnerable to adversarial examples, which can cause fateful consequences in real-world face recognition applications with security-sensitive purposes. Adversarial attacks are widely studied as they can identify the vulnerability of the models before they are deployed. In this paper, we evaluate the robustness of state-of-the-art face recognition models in the decision-based black-box attack setting, where the attackers have no access to the model parameters and gradients, but can only acquire hard-label predictions by sending queries to the target model. This attack setting is more practical in real-world face recognition systems. To improve the efficiency of previous methods, we propose an evolutionary attack algorithm, which can model the local geometries of the search directions and reduce the dimension of the search space. Extensive experiments demonstrate the effectiveness of the proposed method that induces a minimum perturbation to an input face image with fewer queries. We also apply the proposed method to attack a real-world face recognition system successfully.
135 - Chen Ma , Shuyu Cheng , Li Chen 2020
We propose a simple and highly query-efficient black-box adversarial attack named SWITCH, which has a state-of-the-art performance in the score-based setting. SWITCH features a highly efficient and effective utilization of the gradient of a surrogate model $hat{mathbf{g}}$ w.r.t. the input image, i.e., the transferable gradient. In each iteration, SWITCH first tries to update the current sample along the direction of $hat{mathbf{g}}$, but considers switching to its opposite direction $-hat{mathbf{g}}$ if our algorithm detects that it does not increase the value of the attack objective function. We justify the choice of switching to the opposite direction by a local approximate linearity assumption. In SWITCH, only one or two queries are needed per iteration, but it is still effective due to the rich information provided by the transferable gradient, thereby resulting in unprecedented query efficiency. To improve the robustness of SWITCH, we further propose SWITCH$_text{RGF}$ in which the update follows the direction of a random gradient-free (RGF) estimate when neither $hat{mathbf{g}}$ nor its opposite direction can increase the objective, while maintaining the advantage of SWITCH in terms of query efficiency. Experimental results conducted on CIFAR-10, CIFAR-100 and TinyImageNet show that compared with other methods, SWITCH achieves a satisfactory attack success rate using much fewer queries, and SWITCH$_text{RGF}$ achieves the state-of-the-art attack success rate with fewer queries overall. Our approach can serve as a strong baseline for future black-box attacks because of its simplicity. The PyTorch source code is released on https://github.com/machanic/SWITCH.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا