Do you want to publish a course? Click here

Compositionally Generalizable 3D Structure Prediction

89   0   0.0 ( 0 )
 Added by Songfang Han
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Single-image 3D shape reconstruction is an important and long-standing problem in computer vision. A plethora of existing works is constantly pushing the state-of-the-art performance in the deep learning era. However, there remains a much more difficult and under-explored issue on how to generalize the learned skills over unseen object categories that have very different shape geometry distributions. In this paper, we bring in the concept of compositional generalizability and propose a novel framework that could better generalize to these unseen categories. We factorize the 3D shape reconstruction problem into proper sub-problems, each of which is tackled by a carefully designed neural sub-module with generalizability concerns. The intuition behind our formulation is that object parts (slates and cylindrical parts), their relationships (adjacency and translation symmetry), and shape substructures (T-junctions and a symmetric group of parts) are mostly shared across object categories, even though object geometries may look very different (e.g. chairs and cabinets). Experiments on PartNet show that we achieve superior performance than state-of-the-art. This validates our problem factorization and network designs.

rate research

Read More

We present a multi-camera 3D pedestrian detection method that does not need to train using data from the target scene. We estimate pedestrian location on the ground plane using a novel heuristic based on human body poses and persons bounding boxes from an off-the-shelf monocular detector. We then project these locations onto the world ground plane and fuse them with a new formulation of a clique cover problem. We also propose an optional step for exploiting pedestrian appearance during fusion by using a domain-generalizable person re-identification model. We evaluated the proposed approach on the challenging WILDTRACK dataset. It obtained a MODA of 0.569 and an F-score of 0.78, superior to state-of-the-art generalizable detection techniques.
Humans have a remarkable ability to predict the effect of physical interactions on the dynamics of objects. Endowing machines with this ability would allow important applications in areas like robotics and autonomous vehicles. In this work, we focus on predicting the dynamics of 3D rigid objects, in particular an objects final resting position and total rotation when subjected to an impulsive force. Different from previous work, our approach is capable of generalizing to unseen object shapes - an important requirement for real-world applications. To achieve this, we represent object shape as a 3D point cloud that is used as input to a neural network, making our approach agnostic to appearance variation. The design of our network is informed by an understanding of physical laws. We train our model with data from a physics engine that simulates the dynamics of a large number of shapes. Experiments show that we can accurately predict the resting position and total rotation for unseen object geometries.
Implicit surface representations, such as signed-distance functions, combined with deep learning have led to impressive models which can represent detailed shapes of objects with arbitrary topology. Since a continuous function is learned, the reconstructions can also be extracted at any arbitrary resolution. However, large datasets such as ShapeNet are required to train such models. In this paper, we present a new mid-level patch-based surface representation. At the level of patches, objects across different categories share similarities, which leads to more generalizable models. We then introduce a novel method to learn this patch-based representation in a canonical space, such that it is as object-agnostic as possible. We show that our representation trained on one category of objects from ShapeNet can also well represent detailed shapes from any other category. In addition, it can be trained using much fewer shapes, compared to existing approaches. We show several applications of our new representation, including shape interpolation and partial point cloud completion. Due to explicit control over positions, orientations and scales of patches, our representation is also more controllable compared to object-level representations, which enables us to deform encoded shapes non-rigidly.
RNA is a fundamental class of biomolecules that mediate a large variety of molecular processes within the cell. Computational algorithms can be of great help in the understanding of RNA structure-function relationship. One of the main challenges in this field is the development of structure-prediction algorithms, which aim at the prediction of the three-dimensional (3D) native fold from the sole knowledge of the sequence. In a recent paper, we have introduced a scoring function for RNA structure prediction. Here, we analyze in detail the performance of the method, we underline strengths and shortcomings, and we discuss the results with respect to state-of-the-art techniques. These observations provide a starting point for improving current methodologies, thus paving the way to the advances of more accurate approaches for RNA 3D structure prediction.
Person re-identification has seen significant advancement in recent years. However, the ability of learned models to generalize to unknown target domains still remains limited. One possible reason for this is the lack of large-scale and diverse source training data, since manually labeling such a dataset is very expensive and privacy sensitive. To address this, we propose to automatically synthesize a large-scale person re-identification dataset following a set-up similar to real surveillance but with virtual environments, and then use the synthesized person images to train a generalizable person re-identification model. Specifically, we design a method to generate a large number of random UV texture maps and use them to create different 3D clothing models. Then, an automatic code is developed to randomly generate various different 3D characters with diverse clothes, races and attributes. Next, we simulate a number of different virtual environments using Unity3D, with customized camera networks similar to real surveillance systems, and import multiple 3D characters at the same time, with various movements and interactions along different paths through the camera networks. As a result, we obtain a virtual dataset, called RandPerson, with 1,801,816 person images of 8,000 identities. By training person re-identification models on these synthesized person images, we demonstrate, for the first time, that models trained on virtual data can generalize well to unseen target images, surpassing the models trained on various real-world datasets, including CUHK03, Market-1501, DukeMTMC-reID, and almost MSMT17. The RandPerson dataset is available at https://github.com/VideoObjectSearch/RandPerson.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا