Do you want to publish a course? Click here

Surpassing Real-World Source Training Data: Random 3D Characters for Generalizable Person Re-Identification

139   0   0.0 ( 0 )
 Added by Yanan Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Person re-identification has seen significant advancement in recent years. However, the ability of learned models to generalize to unknown target domains still remains limited. One possible reason for this is the lack of large-scale and diverse source training data, since manually labeling such a dataset is very expensive and privacy sensitive. To address this, we propose to automatically synthesize a large-scale person re-identification dataset following a set-up similar to real surveillance but with virtual environments, and then use the synthesized person images to train a generalizable person re-identification model. Specifically, we design a method to generate a large number of random UV texture maps and use them to create different 3D clothing models. Then, an automatic code is developed to randomly generate various different 3D characters with diverse clothes, races and attributes. Next, we simulate a number of different virtual environments using Unity3D, with customized camera networks similar to real surveillance systems, and import multiple 3D characters at the same time, with various movements and interactions along different paths through the camera networks. As a result, we obtain a virtual dataset, called RandPerson, with 1,801,816 person images of 8,000 identities. By training person re-identification models on these synthesized person images, we demonstrate, for the first time, that models trained on virtual data can generalize well to unseen target images, surpassing the models trained on various real-world datasets, including CUHK03, Market-1501, DukeMTMC-reID, and almost MSMT17. The RandPerson dataset is available at https://github.com/VideoObjectSearch/RandPerson.



rate research

Read More

Person re-identification (Re-ID) in real-world scenarios usually suffers from various degradation factors, e.g., low-resolution, weak illumination, blurring and adverse weather. On the one hand, these degradations lead to severe discriminative information loss, which significantly obstructs identity representation learning; on the other hand, the feature mismatch problem caused by low-level visual variations greatly reduces retrieval performance. An intuitive solution to this problem is to utilize low-level image restoration methods to improve the image quality. However, existing restoration methods cannot directly serve to real-world Re-ID due to various limitations, e.g., the requirements of reference samples, domain gap between synthesis and reality, and incompatibility between low-level and high-level methods. In this paper, to solve the above problem, we propose a degradation invariance learning framework for real-world person Re-ID. By introducing a self-supervised disentangled representation learning strategy, our method is able to simultaneously extract identity-related robust features and remove real-world degradations without extra supervision. We use low-resolution images as the main demonstration, and experiments show that our approach is able to achieve state-of-the-art performance on several Re-ID benchmarks. In addition, our framework can be easily extended to other real-world degradation factors, such as weak illumination, with only a few modifications.
139 - Lingxiao He , Wu Liu , Jian Liang 2021
Existing person re-identification (re-id) methods are stuck when deployed to a new unseen scenario despite the success in cross-camera person matching. Recent efforts have been substantially devoted to domain adaptive person re-id where extensive unlabeled data in the new scenario are utilized in a transductive learning manner. However, for each scenario, it is required to first collect enough data and then train such a domain adaptive re-id model, thus restricting their practical application. Instead, we aim to explore multiple labeled datasets to learn generalized domain-invariant representations for person re-id, which is expected universally effective for each new-coming re-id scenario. To pursue practicability in real-world systems, we collect all the person re-id datasets (20 datasets) in this field and select the three most frequently used datasets (i.e., Market1501, DukeMTMC, and MSMT17) as unseen target domains. In addition, we develop DataHunter that collects over 300K+ weak annotated images named YouTube-Human from YouTube street-view videos, which joins 17 remaining full labeled datasets to form multiple source domains. On such a large and challenging benchmark called FastHuman (~440K+ labeled images), we further propose a simple yet effective Semi-Supervised Knowledge Distillation (SSKD) framework. SSKD effectively exploits the weakly annotated data by assigning soft pseudo labels to YouTube-Human to improve models generalization ability. Experiments on several protocols verify the effectiveness of the proposed SSKD framework on domain generalizable person re-id, which is even comparable to supervised learning on the target domains. Lastly, but most importantly, we hope the proposed benchmark FastHuman could bring the next development of domain generalizable person re-id algorithms.
Although existing person re-identification (Re-ID) methods have shown impressive accuracy, most of them usually suffer from poor generalization on unseen target domain. Thus, generalizable person Re-ID has recently drawn increasing attention, which trains a model on source domains that generalizes well on unseen target domain without model updating. In this work, we propose a novel adaptive domain-specific normalization approach (AdsNorm) for generalizable person Re-ID. It describes unseen target domain as a combination of the known source ones, and explicitly learns domain-specific representation with target distribution to improve the models generalization by a meta-learning pipeline. Specifically, AdsNorm utilizes batch normalization layers to collect individual source domains characteristics, and maps source domains into a shared latent space by using these characteristics, where the domain relevance is measured by a distance function of different domain-specific normalization statistics and features. At the testing stage, AdsNorm projects images from unseen target domain into the same latent space, and adaptively integrates the domain-specific features carrying the source distributions by domain relevance for learning more generalizable aggregated representation on unseen target domain. Considering that target domain is unavailable during training, a meta-learning algorithm combined with a customized relation loss is proposed to optimize an effective and efficient ensemble model. Extensive experiments demonstrate that AdsNorm outperforms the state-of-the-art methods. The code is available at: https://github.com/hzphzp/AdsNorm.
117 - Kaiwen Yang , Xinmei Tian 2021
Domain generalization in person re-identification is a highly important meaningful and practical task in which a model trained with data from several source domains is expected to generalize well to unseen target domains. Domain adversarial learning is a promising domain generalization method that aims to remove domain information in the latent representation through adversarial training. However, in person re-identification, the domain and class are correlated, and we theoretically show that domain adversarial learning will lose certain information about class due to this domain-class correlation. Inspired by casual inference, we propose to perform interventions to the domain factor $d$, aiming to decompose the domain-class correlation. To achieve this goal, we proposed estimating the resulting representation $z^{*}$ caused by the intervention through first- and second-order statistical characteristic matching. Specifically, we build a memory bank to restore the statistical characteristics of each domain. Then, we use the newly generated samples ${z^{*},y,d^{*}}$ to compute the loss function. These samples are domain-class correlation decomposed; thus, we can learn a domain-invariant representation that can capture more class-related features. Extensive experiments show that our model outperforms the state-of-the-art methods on the large-scale domain generalization Re-ID benchmark.
Person re-identification (ReID) aims at finding the same person in different cameras. Training such systems usually requires a large amount of cross-camera pedestrians to be annotated from surveillance videos, which is labor-consuming especially when the number of cameras is large. Differently, this paper investigates ReID in an unexplored single-camera-training (SCT) setting, where each person in the training set appears in only one camera. To the best of our knowledge, this setting was never studied before. SCT enjoys the advantage of low-cost data collection and annotation, and thus eases ReID systems to be trained in a brand new environment. However, it raises major challenges due to the lack of cross-camera person occurrences, which conventional approaches heavily rely on to extract discriminative features. The key to dealing with the challenges in the SCT setting lies in designing an effective mechanism to complement cross-camera annotation. We start with a regular deep network for feature extraction, upon which we propose a novel loss function named multi-camera negative loss (MCNL). This is a metric learning loss motivated by probability, suggesting that in a multi-camera system, one image is more likely to be closer to the most similar negative sample in other cameras than to the most similar negative sample in the same camera. In experiments, MCNL significantly boosts ReID accuracy in the SCT setting, which paves the way of fast deployment of ReID systems with good performance on new target scenes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا