No Arabic abstract
We quantum-simulated the 2D Harper-Hofstadter (HH) lattice model in a highly elongated tube geometry -- three sites in circumference -- using an atomic Bose-Einstein condensate. In addition to the usual transverse (out-of-plane) magnetic flux, piercing the surface of the tube, we threaded a longitudinal flux $Phi_{rm L}$ down the axis of the tube This geometry evokes an Aharonov-Bohm interferometer, where noise in $Phi_{rm L}$ would readily decohere the interference present in trajectories encircling the tube. We observe this behavior only when transverse flux is a rational fraction of the flux-quantum, and remarkably find that for irrational fractions the decoherence is absent. Furthermore, at rational values of transverse flux, we show that the time evolution averaged over the noisy longitudinal flux matches the time evolution at nearby irrational fluxes. Thus, the appealing intuitive picture of an Aharonov-Bohm interferometer is insufficient. Instead, we quantitatively explain our observations by transforming the HH model into a collection of momentum-space Aubry-Andr{e} models.
We demonstrate a new way to extend the coherence time of separated Bose-Einstein condensates that involves immersion into a superfluid bath. When both the system and the bath have similar scattering lengths, immersion in a superfluid bath cancels out inhomogeneous potentials either imposed by external fields or inherent in density fluctuations due to atomic shot noise. This effect, which we call superfluid shielding, allows for coherence lifetimes beyond the projection noise limit. We probe the coherence between separated condensates in different sites of an optical lattice by monitoring the contrast and decay of Bloch oscillations. Our technique demonstrates a new way that interactions can improve the performance of quantum devices.
The Su-Schrieffer-Heeger (SSH) model, which captures the most striking transport properties of the conductive organic polymer $trans$-polyacetylene, provides perhaps the most basic model system supporting topological excitations. The alternating bond pattern of polyacetylene chains is captured by the bipartite sublattice structure of the SSH model, emblematic of one-dimensional chiral symmetric topological insulators. This structure supports two distinct nontrivial topological phases, which, when interfaced with one another or with a topologically trivial phase, give rise to topologically-protected, dispersionless boundary states. Using $^{87}$Rb atoms in a momentum-space lattice, we realize fully-tunable condensed matter Hamiltonians, allowing us to probe the dynamics and equilibrium properties of the SSH model. We report on the experimental quantum simulation of this model and observation of the localized topological soliton state through quench dynamics, phase-sensitive injection, and adiabatic preparation.
The implementation of a combination of continuous weak measurement and classical feedback provides a powerful tool for controlling the evolution of quantum systems. In this work, we investigate the potential of this approach from three perspectives. First, we consider a double-well system in the classical large-atom-number limit, deriving the exact equations of motion in the presence of feedback. Second, we consider the same system in the limit of small atom number, revealing the effect that quantum fluctuations have on the feedback scheme. Finally, we explore the behavior of modest sized Hubbard chains using exact numerics, demonstrating the near-deterministic preparation of number states, a tradeoff between local and non-local feedback for state preparation, and evidence of a feedback-driven symmetry-breaking phase transition.
In Heisenberg models with exchange anisotropy, transverse spin components are not conserved and can decay not only by transport, but also by dephasing. Here we utilize ultracold atoms to simulate the dynamics of 1D Heisenberg spin chains, and observe fast, local spin decay controlled by the anisotropy. Additionally, we directly observe an effective magnetic field created by superexchange which causes an inhomogeneous decay mechanism due to variations of lattice depth between chains, as well as dephasing within each chain due to the twofold reduction of the effective magnetic field at the edges of the chains and due to fluctuations of the effective magnetic field in the presence of mobile holes. The latter is a new coupling mechanism between holes and magnons. All these dephasing mechanisms, corroborated by extensive numerical simulations, have not been observed before with ultracold atoms and illustrate basic properties of the underlying Hubbard model.
Topological states of matter, such as fractional quantum Hall states, are an active field of research due to their exotic excitations. In particular, ultracold atoms in optical lattices provide a highly controllable and adaptable platform to study such new types of quantum matter. However, finding a clear route to realize non-Abelian quantum Hall states in these systems remains challenging. Here we use the density-matrix renormalization-group (DMRG) method to study the Hofstadter-Bose-Hubbard model at filling factor $ u = 1$ and find strong indications that at $alpha=1/6$ magnetic flux quanta per plaquette the ground state is a lattice analog of the continuum non-Abelian Pfaffian. We study the on-site correlations of the ground state, which indicate its paired nature at $ u = 1$, and find an incompressible state characterized by a charge gap in the bulk. We argue that the emergence of a charge density wave on thin cylinders and the behavior of the two- and three-particle correlation functions at short distances provide evidence for the state being closely related to the continuum Pfaffian. The signatures discussed in this letter are accessible in current cold atom experiments and we show that the Pfaffian-like state is readily realizable in few-body systems using adiabatic preparation schemes.