Do you want to publish a course? Click here

Feedback-stabilized dynamical steady states in the Bose-Hubbard model

90   0   0.0 ( 0 )
 Added by Jeremy Young
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The implementation of a combination of continuous weak measurement and classical feedback provides a powerful tool for controlling the evolution of quantum systems. In this work, we investigate the potential of this approach from three perspectives. First, we consider a double-well system in the classical large-atom-number limit, deriving the exact equations of motion in the presence of feedback. Second, we consider the same system in the limit of small atom number, revealing the effect that quantum fluctuations have on the feedback scheme. Finally, we explore the behavior of modest sized Hubbard chains using exact numerics, demonstrating the near-deterministic preparation of number states, a tradeoff between local and non-local feedback for state preparation, and evidence of a feedback-driven symmetry-breaking phase transition.



rate research

Read More

170 - Santi Prestipino 2021
Ever since the first observation of Bose-Einstein condensation in the nineties, ultracold quantum gases have been the subject of intense research, providing a unique tool to understand the behavior of matter governed by the laws of quantum mechanics. Ultracold bosonic atoms loaded in an optical lattice are usually described by the Bose-Hubbard model or a variant of it. In addition to the common insulating and superfluid phases, other phases (like density waves and supersolids) may show up in the presence of a short-range interparticle repulsion and also depending on the geometry of the lattice. We herein explore this possibility, using the graph of a convex polyhedron as lattice and playing with the coordination of nodes to promote the wanted finite-size ordering. To accomplish the job we employ the method of decoupling approximation, whose efficacy is tested in one case against exact diagonalization. We report zero-temperature results for two Catalan solids, the tetrakis hexahedron and the pentakis dodecahedron, for which a thorough ground-state analysis reveals the existence of insulating phases with polyhedral order and a widely extended supersolid region. The key to this outcome is the unbalance in coordination between inequivalent nodes of the graph. The predicted phases can be probed in systems of ultracold atoms using programmable holographic optical tweezers.
88 - Michele Fava , Rosario Fazio , 2019
We provide evidence that a clean kicked Bose-Hubbard model exhibits a many-body dynamically localized phase. This phase shows ergodicity breaking up to the largest sizes we were able to consider. We argue that this property persists in the limit of large size. The Floquet states violate eigenstate thermalization and then the asymptotic value of local observables depends on the initial state and is not thermal. This implies that the system does not generically heat up to infinite temperature, for almost all the initial states. Differently from many-body localization here the entanglement entropy linearly increases in time. This increase corresponds to space-delocalized Floquet states which are nevertheless localized across specific subsectors of the Hilbert space: In this way the system is prevented from randomly exploring all the Hilbert space and does not thermalize.
The manipulation of many-body systems often involves time-dependent forces that cause unwanted heating. One strategy to suppress heating is to use time-periodic (Floquet) forces at large driving frequencies. For quantum spin systems with bounded spectra, it was shown rigorously that the heating rate is exponentially small in the driving frequency. Recently, the exponential suppression of heating has also been observed in an experiment with ultracold atoms, realizing a periodically driven Bose-Hubbard model. This model has an unbounded spectrum and, hence, is beyond the reach of previous theoretical approaches. Here, we study this model with two semiclassical approaches valid, respectively, at large and weak interaction strengths. In both limits, we compute the heating rates by studying the statistical probability to encounter a many-body resonance, and obtain a quantitative agreement with the exact diagonalization of the quantum model. Our approach demonstrates the relevance of statistical arguments to Floquet perthermalization of interacting many-body quantum systems.
316 - Mi Yan , Hoi-Yin Hui , 2016
Observations of center of mass dynamics offer a straightforward method to identify strongly interacting quantum phases of atoms placed in optical lattices. We theoretically study the dynamics of states derived from the disordered Bose-Hubbard model in a trapping potential. We find that the edge states in the trap allow center of mass motion even with insulating states in the center. We identify short and long-time scale mechanisms for edge state transport in insulating phases. We also argue that the center of mass velocity can aid in identifying a Bose-glass phase. Our zero temperature results offer important insights into mechanisms of transport of atoms in trapped optical lattices while putting bounds on center of mass dynamics expected at non-zero temperature.
117 - Geva Arwas , Doron Cohen 2016
A semiclassical theory is provided for the metastability regime-diagram of atomtronic superfluid circuits. Such circuits typically exhibit high-dimensional chaos; and non-linear resonances that couple the Bogoliubov excitations manifest themselves. Contrary to the expectation these resonances do not originate from the familiar Beliaev and Landau damping terms. Rather, they are described by a variant of the Cherry Hamiltonian of celestial mechanics. Consequently we study the induced decay process, and its dependence on the number of sites and of condensed particles.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا