Do you want to publish a course? Click here

SAFCAR: Structured Attention Fusion for Compositional Action Recognition

67   0   0.0 ( 0 )
 Added by Tae Soo Kim
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present a general framework for compositional action recognition -- i.e. action recognition where the labels are composed out of simpler components such as subjects, atomic-actions and objects. The main challenge in compositional action recognition is that there is a combinatorially large set of possible actions that can be composed using basic components. However, compositionality also provides a structure that can be exploited. To do so, we develop and test a novel Structured Attention Fusion (SAF) self-attention mechanism to combine information from object detections, which capture the time-series structure of an action, with visual cues that capture contextual information. We show that our approach recognizes novel verb-noun compositions more effectively than current state of the art systems, and it generalizes to unseen action categories quite efficiently from only a few labeled examples. We validate our approach on the challenging Something-Else tasks from the Something-Something-V2 dataset. We further show that our framework is flexible and can generalize to a new domain by showing competitive results on the Charades-Fewshot dataset.



rate research

Read More

By extracting spatial and temporal characteristics in one network, the two-stream ConvNets can achieve the state-of-the-art performance in action recognition. However, such a framework typically suffers from the separately processing of spatial and temporal information between the two standalone streams and is hard to capture long-term temporal dependence of an action. More importantly, it is incapable of finding the salient portions of an action, say, the frames that are the most discriminative to identify the action. To address these problems, a textbf{j}oint textbf{n}etwork based textbf{a}ttention (JNA) is proposed in this study. We find that the fully-connected fusion, branch selection and spatial attention mechanism are totally infeasible for action recognition. Thus in our joint network, the spatial and temporal branches share some information during the training stage. We also introduce an attention mechanism on the temporal domain to capture the long-term dependence meanwhile finding the salient portions. Extensive experiments are conducted on two benchmark datasets, UCF101 and HMDB51. Experimental results show that our method can improve the action recognition performance significantly and achieves the state-of-the-art results on both datasets.
418 - Lili Meng , Bo Zhao , Bo Chang 2018
Inspired by the observation that humans are able to process videos efficiently by only paying attention where and when it is needed, we propose an interpretable and easy plug-in spatial-temporal attention mechanism for video action recognition. For spatial attention, we learn a saliency mask to allow the model to focus on the most salient parts of the feature maps. For temporal attention, we employ a convolutional LSTM based attention mechanism to identify the most relevant frames from an input video. Further, we propose a set of regularizers to ensure that our attention mechanism attends to coherent regions in space and time. Our model not only improves video action recognition accuracy, but also localizes discriminative regions both spatially and temporally, despite being trained in a weakly-supervised manner with only classification labels (no bounding box labels or time frame temporal labels). We evaluate our approach on several public video action recognition datasets with ablation studies. Furthermore, we quantitatively and qualitatively evaluate our models ability to localize discriminative regions spatially and critical frames temporally. Experimental results demonstrate the efficacy of our approach, showing superior or comparable accuracy with the state-of-the-art methods while increasing model interpretability.
Temporal modelling is the key for efficient video action recognition. While understanding temporal information can improve recognition accuracy for dynamic actions, removing temporal redundancy and reusing past features can significantly save computation leading to efficient action recognition. In this paper, we introduce an adaptive temporal fusion network, called AdaFuse, that dynamically fuses channels from current and past feature maps for strong temporal modelling. Specifically, the necessary information from the historical convolution feature maps is fused with current pruned feature maps with the goal of improving both recognition accuracy and efficiency. In addition, we use a skipping operation to further reduce the computation cost of action recognition. Extensive experiments on Something V1 & V2, Jester and Mini-Kinetics show that our approach can achieve about 40% computation savings with comparable accuracy to state-of-the-art methods. The project page can be found at https://mengyuest.github.io/AdaFuse/
Egocentric video recognition is a natural testbed for diverse interaction reasoning. Due to the large action vocabulary in egocentric video datasets, recent studies usually utilize a two-branch structure for action recognition, ie, one branch for verb classification and the other branch for noun classification. However, correlation studies between the verb and the noun branches have been largely ignored. Besides, the two branches fail to exploit local features due to the absence of a position-aware attention mechanism. In this paper, we propose a novel Symbiotic Attention framework leveraging Privileged information (SAP) for egocentric video recognition. Finer position-aware object detection features can facilitate the understanding of actors interaction with the object. We introduce these features in action recognition and regard them as privileged information. Our framework enables mutual communication among the verb branch, the noun branch, and the privileged information. This communication process not only injects local details into global features but also exploits implicit guidance about the spatio-temporal position of an on-going action. We introduce novel symbiotic attention (SA) to enable effective communication. It first normalizes the detection guided features on one branch to underline the action-relevant information from the other branch. SA adaptively enhances the interactions among the three sources. To further catalyze this communication, spatial relations are uncovered for the selection of most action-relevant information. It identifies the most valuable and discriminative feature for classification. We validate the effectiveness of our SAP quantitatively and qualitatively. Notably, it achieves the state-of-the-art on two large-scale egocentric video datasets.
We address human action recognition from multi-modal video data involving articulated pose and RGB frames and propose a two-stream approach. The pose stream is processed with a convolutional model taking as input a 3D tensor holding data from a sub-sequence. A specific joint ordering, which respects the topology of the human body, ensures that different convolutional layers correspond to meaningful levels of abstraction. The raw RGB stream is handled by a spatio-temporal soft-attention mechanism conditioned on features from the pose network. An LSTM network receives input from a set of image locations at each instant. A trainable glimpse sensor extracts features on a set of predefined locations specified by the pose stream, namely the 4 hands of the two people involved in the activity. Appearance features give important cues on hand motion and on objects held in each hand. We show that it is of high interest to shift the attention to different hands at different time steps depending on the activity itself. Finally a temporal attention mechanism learns how to fuse LSTM features over time. We evaluate the method on 3 datasets. State-of-the-art results are achieved on the largest dataset for human activity recognition, namely NTU-RGB+D, as well as on the SBU Kinect Interaction dataset. Performance close to state-of-the-art is achieved on the smaller MSR Daily Activity 3D dataset.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا